scholarly journals Investigations of dimethylglycine (DMG), glycine betaine and ectoine uptake by a BCCT family transporter with broad substrate specificity in Vibrio species

Author(s):  
Gwendolyn J. Gregory ◽  
Anirudha Dutta ◽  
Vijay Parashar ◽  
E. Fidelma Boyd

AbstractFluctuations in osmolarity are one of the most prevalent stresses to which bacteria must adapt, both hypo- and hyper-osmotic conditions. Most bacteria cope with high osmolarity by accumulating compatible solutes (osmolytes) in the cytoplasm to maintain the turgor pressure of the cell. Vibrio parahaemolyticus, a halophile, utilizes at least six compatible solute transporters for the uptake of osmolytes: two ABC family ProU transporters and four betaine-carnitine-choline transporter (BCCT) family transporters. The full range of compatible solutes transported by this species has yet to be determined. Using an osmolyte phenotypic microarray plate for growth analyses, we expanded known osmolytes used by V. parahaemolyticus to include N-N dimethylglycine (DMG) amongst others. We showed that V. parahaemolyticus requires a BCCT transporter for DMG uptake, carriers that were not known to transport DMG. Growth pattern analysis of four triple-bccT mutants, possessing only one functional BCCT, indicated that BccT1 (VP1456), BccT2 (VP1723), and BccT3 (VP1905) transported DMG, which was confirmed by functional complementation in E. coli strain MKH13. BccT1 was unusual in that it could uptake both compounds with methylated head groups (glycine betaine (GB), choline and DMG) and cyclic compounds (ectoine and proline). Bioinformatics analysis identified the four coordinating residues for glycine betaine in BccT1. In silico modelling analysis demonstrated that glycine betaine, DMG, and ectoine docked in the same binding pocket in BccT1. Using site-directed mutagenesis, we showed that a strain with all four resides mutated resulted in loss of uptake of glycine betaine, DMG and ectoine. We showed three of the four residues were essential for ectoine uptake whereas only one of the residues was essential for glycine betaine uptake. Overall, we have demonstrated that DMG is a highly effective compatible solute for Vibrio species and have elucidated the amino acid residues in BccT1 that are important for coordination of glycine betaine, DMG and ectoine transport.ImportanceVibrio parahaemolyticus possesses at least six osmolyte transporters, which allow the bacterium to adapt to high salinity conditions. In this study, we identified several novel osmolytes that are utilized by V. parahaemolyticus. We demonstrated that the compound dimethylglycine (DMG), which is abundant in the marine environment, is a highly effective osmolyte for Vibrio species. We determined that DMG is transported via BCCT-family carriers, which have not been shown previously to uptake this compound. BccT1 was a carrier for glycine betaine, DMG and ectoine and we identified the amino acid residues essential for coordination of these compounds. The data suggest that for BccT1, glycine betaine is more easily accommodated than ectoine in the transporter binding pocket.

2020 ◽  
Vol 202 (24) ◽  
Author(s):  
Gwendolyn J. Gregory ◽  
Anirudha Dutta ◽  
Vijay Parashar ◽  
E. Fidelma Boyd

ABSTRACT Fluctuations in osmolarity are one of the most prevalent stresses to which bacteria must adapt, both hypo- and hyperosmotic conditions. Most bacteria cope with high osmolarity by accumulating compatible solutes (osmolytes) in the cytoplasm to maintain the turgor pressure of the cell. Vibrio parahaemolyticus, a halophile, utilizes at least six compatible solute transporters for the uptake of osmolytes: two ABC family ProU transporters and four betaine-carnitine-choline transporter (BCCT) family transporters. The full range of compatible solutes transported by this species has yet to be determined. Using an osmolyte phenotypic microarray plate for growth analyses, we expanded the known osmolytes used by V. parahaemolyticus to include N,N-dimethylglycine (DMG), among others. Growth pattern analysis of four triple-bccT mutants, possessing only one functional BCCT, indicated that BccT1 (VP1456), BccT2 (VP1723), and BccT3 (VP1905) transported DMG. BccT1 was unusual in that it could take up both compounds with methylated head groups (glycine betaine [GB], choline, and DMG) and cyclic compounds (ectoine and proline). Bioinformatics analysis identified the four coordinating amino acid residues for GB in the BccT1 protein. In silico modeling analysis demonstrated that GB, DMG, and ectoine docked in the same binding pocket in BccT1. Using site-directed mutagenesis, we showed that a strain with all four residues mutated resulted in the loss of uptake of GB, DMG, and ectoine. We showed that three of the four residues were essential for ectoine uptake, whereas only one of the residues was important for GB uptake. Overall, we have demonstrated that DMG is a highly effective compatible solute for Vibrio species and have elucidated the amino acid residues in BccT1 that are important for the coordination of GB, DMG, and ectoine transport. IMPORTANCE Vibrio parahaemolyticus possesses at least six osmolyte transporters, which allow the bacterium to adapt to high-salinity conditions. In this study, we identified several additional osmolytes that were utilized by V. parahaemolyticus. We demonstrated that the compound DMG, which is present in the marine environment, was a highly effective osmolyte for Vibrio species. We determined that DMG is transported via BCCT family carriers, which have not been shown previously to take up this compound. BccT1 was a carrier for GB, DMG, and ectoine, and we identified the amino acid residues essential for the coordination of these compounds. The data suggest that for BccT1, GB is more easily accommodated than ectoine in the transporter binding pocket.


2019 ◽  
Author(s):  
Gwendolyn J. Gregory ◽  
Daniel P. Morreale ◽  
E. Fidelma Boyd

AbstractBacteria accumulate small, organic compounds, called compatible solutes, via uptake from the environment or biosynthesis from available precursors to maintain the turgor pressure of the cell in response to osmotic stress. Vibrio parahaemolyticus has biosynthesis pathways for the compatible solutes ectoine (ectABCasp_ect) and glycine betaine (betIBAproXWV), four betaine-carnitine-choline transporters (bcct1-bcct4) and a second ProU transporter (proVWX). Most of these systems are induced in high salt. CosR, a MarR-type regulator, which is divergently transcribed from bcct3, was previously shown to be a direct repressor of ectABCasp_ect in Vibrio species. In this study, we investigated the role of CosR in glycine betaine biosynthesis and compatible solute transporter gene regulation. Expression analyses demonstrated that betIBAproXWV, bcct1, bcct3, and proVWX are repressed in low salinity. Examination of an in-frame cosR deletion mutant shows induced expression of these systems in the mutant at low salinity compared to wild-type. DNA binding assays demonstrate that purified CosR binds directly to the regulatory region of each system. In Escherichia coli GFP reporter assays, we demonstrate that CosR directly represses transcription of betIBAproXWV, bcct3, and proVWX. Similar to V. harveyi, we show betIBAproXWV is positively regulated by the LuxR homolog OpaR. Bioinformatics analysis demonstrates that CosR is widespread within the genus, present in over 50 species. In several species, the cosR homolog was clustered with the betIBAproXWV operon, which again suggests the importance of this regulator in glycine betaine biosynthesis. Incidentally, in four Aliivibrio species that contain ectoine biosynthesis genes, we identified another MarR-type regulator, ectR, clustered with these genes, which suggests the presence of a novel ectoine regulator. Homologs of EctR in this genomic context were present in A. fischeri, A. finisterrensis, A. sifiae and A. wodanis.ImportanceVibrio parahaemolyticus can accumulate compatible solutes via biosynthesis and transport, which allow the cell to survive in high salinity conditions. There is little need for compatible solutes under low salinity conditions, and biosynthesis and transporter systems are repressed. However, the mechanism of this repression is not fully elucidated. CosR plays a major role in the repression of multiple compatible solute systems in V. parahaemolyticus as a direct negative regulator of ectoine and glycine betaine biosynthesis systems and four transporters. Homology analysis suggests that CosR functions in this manner in many other Vibrio species. In Aliivibrio species, we identified a new MarR family regulator EctR that clusters with the ectoine biosynthesis genes.


2019 ◽  
Vol 85 (22) ◽  
Author(s):  
Gwendolyn J. Gregory ◽  
Daniel P. Morreale ◽  
Megan R. Carpenter ◽  
Sai S. Kalburge ◽  
E. Fidelma Boyd

ABSTRACT To maintain the turgor pressure of the cell under high osmolarity, bacteria accumulate small organic compounds called compatible solutes, either through uptake or biosynthesis. Vibrio parahaemolyticus, a marine halophile and an important human and shellfish pathogen, has to adapt to abiotic stresses such as changing salinity. Vibrio parahaemolyticus contains multiple compatible solute biosynthesis and transporter systems, including the ectABC-asp_ect operon required for de novo ectoine biosynthesis. Ectoine biosynthesis genes are present in many halotolerant bacteria; however, little is known about the mechanism of regulation. We investigated the role of the quorum sensing master regulators OpaR and AphA in ect gene regulation. In an opaR deletion mutant, transcriptional reporter assays demonstrated that ect expression was induced. In an electrophoretic mobility shift assay, we showed that purified OpaR bound to the ect regulatory region indicating direct regulation by OpaR. In an aphA deletion mutant, expression of the ect genes was repressed, and purified AphA bound upstream of the ect genes. These data indicate that AphA is a direct positive regulator. CosR, a Mar-type regulator known to repress ect expression in V. cholerae, was found to repress ect expression in V. parahaemolyticus. In addition, we identified a feed-forward loop in which OpaR is a direct activator of cosR, while AphA is an indirect activator of cosR. Regulation of the ectoine biosynthesis pathway via this feed-forward loop allows for precise control of ectoine biosynthesis genes throughout the growth cycle to maximize fitness. IMPORTANCE Accumulation of compatible solutes within the cell allows bacteria to maintain intracellular turgor pressure and prevent water efflux. De novo ectoine production is widespread among bacteria, and the ect operon encoding the biosynthetic enzymes is induced by increased salinity. Here, we demonstrate that the quorum sensing regulators AphA and OpaR integrate with the osmotic stress response pathway to control transcription of ectoine biosynthesis genes in V. parahaemolyticus. We uncovered a feed-forward loop wherein quorum sensing regulators also control transcription of cosR, which encodes a negative regulator of the ect operon. Moreover, our data suggest that this mechanism may be widespread in Vibrio species.


2002 ◽  
Vol 65 (6) ◽  
pp. 1008-1015 ◽  
Author(s):  
ODDUR VILHELMSSON ◽  
KAREN J. MILLER

The effects of different humectants (sodium chloride, sucrose, and glycerol) on the growth of and compatible solute (glycine betaine, proline, and carnitine) uptake by the osmotolerant foodborne pathogen Staphylococcus aureus were investigated. While growth in the presence of the impermeant humectants sodium chloride and sucrose induced the accumulation of proline and glycine betaine by cells, growth in the presence of the permeant humectant glycerol did not. When compatible solutes were omitted from low-water-activity media, growth was very poor in the presence of impermeant humectants. In contrast, the addition of compatible solutes had essentially no effect on growth when cells were grown in low-water-activity media containing glycerol as the humectant. Carnitine was found to accumulate to high intracellular levels in osmotically stressed cells when proline and glycine betaine were absent, making it a potentially important compatible solute for this organism.


1998 ◽  
Vol 10 (4) ◽  
pp. 347 ◽  
Author(s):  
L. G. Sánchez-Partida ◽  
B. P. Setchell ◽  
W. M. C. Maxwell

The effect of the compatible solutes proline, glycine betaine and trehalose in Tris-based diluents at varying pH, concentrations of egg yolk or glycerol on the post-thaw motility characteristics and fertility of ram sperm was examined. In addition, the amino acid glycine was compared with proline, glycine betaine and a standard Tris-based diluent. Post-thaw motility was assessed using a Hamilton–Thorn motility analyser. In the presence of glycerol and egg yolk, proline and glycine betaine improved the post-thaw motility characteristics of ram sperm. Regardless of the pH of the diluent at which semen was frozen, the percentage of motile sperm was higher when frozen in the presence of proline or glycine betaine than in their absence, whereas proline and glycine betaine only improved the progressive and rapid percentages of sperm for semen frozen in diluents at pH lower than 7.0. When semen was frozen in the absence of egg yolk or glycerol all the motility characteristics were reduced. Increasing the concentration of egg yolk in the diluent from 5% to 10, 15 or 20% had no effect on the post-thaw motility of sperm. The addition of 27 mM of proline or glycine betaine to the diluent also improved post-thaw motility. However, at a concentration of 81 mM, proline and glycine betaine had a detrimental effect on the percentage of motile sperm. Trehalose had no effect on the motility of sperm frozen in glycerol-containing diluents, but motility was lower after cryopreservation in glycine than in Tris-, proline- or glycine betaine-based diluents. There were no differences in the fertility of sperm frozen in Tris-, proline or glycine betaine diluents after cervical or laparo-scopic insemination of ewes.


2001 ◽  
Vol 355 (3) ◽  
pp. 841-849 ◽  
Author(s):  
Chang Hoon LEE ◽  
Patrick Y. UM ◽  
Myung Hee PARK

Deoxyhypusine synthase catalyses the first step in the biosynthesis of hypusine [Nε-(4-amino-2-hydroxybutyl)lysine]. The crystal structure of human deoxyhypusine synthase in complex with NAD revealed four NAD-binding sites per enzyme tetramer, and led to a prediction of the spermidine-binding pocket. We have replaced each of the seven amino acid residues at the predicted spermidine-binding site, and eleven residues that contact NAD, on an individual basis with alanine. Of the amino acid residues at the spermidine site, substitution of Asp-243, Trp-327, His-288, Asp-316 or Glu-323 with alanine caused an almost complete loss of spermidine binding and enzyme activity; only the mutation Tyr-305 → Ala showed partial binding and activity. His-288 → Ala was also deficient in terms of binding NAD. NAD binding was significantly reduced in all of the NAD-site mutant enzymes, except for Glu-137 → Ala, which showed a normal binding of NAD, but was totally lacking in spermidine binding. Of the NAD-site mutant enzymes, Asp-342 → Ala, Asp-313 → Ala and Asp-238 → Ala displayed the lowest binding of NAD. These enzymes and His-288Ala also showed a reduced binding of spermidine, presumably because spermidine binding is dependent on NAD. These findings permit the positive identification of amino acid residues critical for binding of spermidine and NAD, and provide a new insight into the complex molecular interactions involved in the deoxyhypusine synthase reaction.


2011 ◽  
Vol 436 (2) ◽  
pp. 283-289 ◽  
Author(s):  
Yang Du ◽  
Wei-Wei Shi ◽  
Yong-Xing He ◽  
Yi-Hu Yang ◽  
Cong-Zhao Zhou ◽  
...  

The compatible solute ABC (ATP-binding cassette) transporters are indispensable for acquiring a variety of compatible solutes under osmotic stress in Bacillus subtilis. The substrate-binding protein OpuCC (Opu is osmoprotectant uptake) of the ABC transporter OpuC can recognize a broad spectrum of compatible solutes, compared with its 70% sequence-identical paralogue OpuBC that can solely bind choline. To explore the structural basis of this difference of substrate specificity, we determined crystal structures of OpuCC in the apo-form and in complex with carnitine, glycine betaine, choline and ectoine respectively. OpuCC is composed of two α/β/α globular sandwich domains linked by two hinge regions, with a substrate-binding pocket located at the interdomain cleft. Upon substrate binding, the two domains shift towards each other to trap the substrate. Comparative structural analysis revealed a plastic pocket that fits various compatible solutes, which attributes the multiple-substrate binding property to OpuCC. This plasticity is a gain-of-function via a single-residue mutation of Thr94 in OpuCC compared with Asp96 in OpuBC.


2002 ◽  
Vol 68 (5) ◽  
pp. 2133-2139 ◽  
Author(s):  
M. Roeßler ◽  
K. Pflüger ◽  
H. Flach ◽  
T. Lienard ◽  
G. Gottschalk ◽  
...  

ABSTRACT The salt adaptation of the methanogenic archaeon Methanosarcina mazei Gö1 was studied at the physiological and molecular levels. The freshwater organism M. mazei Gö1 was able to adapt to salt concentrations up to 1 M, and the addition of the compatible solute glycine betaine to the growth medium facilitated adaptation to higher salt concentrations. Transport studies with cell suspensions revealed a salt-induced glycine betaine uptake activity in M. mazei Gö1, and inhibitor studies argue for a primary transport device. Analysis of the genome of M. mazei Gö1 identified a homolog of known primary glycine betaine transporters. This gene cluster was designated Ota (osmoprotectant transporter A). Its sequence and gene organization are very similar to those of the glycine betaine transporter OpuA of Bacillus subtilis. Northern blot analysis of otaC revealed a salt-dependent transcription of this gene. Ota is the first identified salt-induced transporter for compatible solutes in Archaea.


2009 ◽  
Vol 390 (3) ◽  
Author(s):  
Takayuki K. Nemoto ◽  
Toshio Ono ◽  
Yu Shimoyama ◽  
Shigenobu Kimura ◽  
Yuko Ohara-Nemoto

Abstract Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus warneri secrete glutamyl endopeptidases, designated GluV8, GluSE, and GluSW, respectively. The order of their protease activities is GluSE<GluSW<<GluV8. In the present study, we investigated the mechanism that causes these differences. Expression of chimeric proteins between GluV8 and GluSE revealed that the difference is primarily attributed to amino acid residues 170–195, which define the intrinsic protease activity, and additionally to residues 119–169, which affect the proteolytic sensitivity. Among nine substitutions present in residues 170–195 of the three proteases, the substitutions at positions 185, 188, and 189 were responsible for the changes in their activities, and the combination of W185, V188, and P189, which naturally occurs in GluV8, exerts the highest protease activity. W185 and P189 were indispensable for full activity, but V188 could be replaced by hydrophobic amino acids. These three amino acid residues appear to create a substrate-binding pocket together with the catalytic triad and the N-terminal V1, and therefore define the K m values of the proteases. We also describe a method to produce a chimeric form of GluSE and GluV8 that is resistant to proteolysis, and therefore possesses 4-fold higher activity than the wild-type recombinant GluV8.


Sign in / Sign up

Export Citation Format

Share Document