scholarly journals Properties of Glial Cell at the Neuromuscular Junction are Incompatible with synaptic repair in the SOD1G37R ALS mouse model

2020 ◽  
Author(s):  
Martineau Éric ◽  
Danielle Arbour ◽  
Joanne Vallée ◽  
Robitaille Richard

ABSTRACTAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motoneurons in a motor-unit (MU) dependent manner. Glial dysfunction contributes to numerous aspects of the disease. At the neuromuscular junction (NMJ), early alterations in perisynaptic Schwann cell (PSC), glial cells at this synapse, may impact their ability to regulate NMJ stability and repair. Indeed, muscarinic receptors (mAChR) regulate the repair phenotype of PSCs and are overactivated at disease-resistant NMJs (Soleus muscle) in SOD1G37R mice. However, it remains unknown whether this is the case at disease-vulnerable NMJs and whether it translates into an impairment of PSC-dependent repair mechanisms. We used Soleus and Sternomastoid muscles from SOD1G37R mice and performed Ca2+-imaging to monitor PSC activity and used immunohistochemistry to analyze their repair and phagocytic properties. We show that PSC mAChR-dependent activity was transiently increased at disease-vulnerable NMJs (Sternomastoid muscle). Furthermore, PSCs from both muscles extended disorganized processes from denervated NMJs and failed to initiate or guide nerve terminal sprouts at disease-vulnerable NMJs, a phenomenon essential for compensatory reinnervation. This was accompanied by a failure of numerous PSCs to upregulate Galectin-3 (MAC-2), a marker of glial axonal debris phagocytosis, upon NMJ denervation in SOD1 mice. Finally, differences in these PSC-dependent NMJ repair mechanisms were MU-type dependent, thus reflecting MU vulnerability in ALS. Together, these results reveal that neuron-glia communication is ubiquitously altered at the NMJ in ALS. This appears to prevent PSCs from adopting a repair phenotype, resulting in a maladapted response to denervation at the NMJ in ALS.SIGNIFICANCE STATEMENTUnderstanding how the complex interplay between neurons and glial cells ultimately lead to the degeneration of motor neurons and loss of motor function is a fundamental question to comprehend amyotrophic lateral sclerosis. An early and persistent alteration of glial cell activity takes place at the neuromuscular junction (NMJ), the output of motor neurons, but its impact on NMJ repair remains unknown. Here, we reveal that glial cells at disease-vulnerable NMJs often fail to guide compensatory nerve terminal sprouts and to adopt a phagocytic phenotype on denervated NMJs in SOD1G37R mice. These results show that glial cells at the NMJ elaborate an inappropriate response to NMJ degeneration in a manner that reflects motor-unit vulnerability and potentially impairs compensatory reinnervation.

2016 ◽  
Vol 74 (10) ◽  
pp. 849-854
Author(s):  
Paulo Victor Sgobbi de Souza ◽  
Wladimir Bocca Vieira de Rezende Pinto ◽  
Flávio Moura Rezende Filho ◽  
Acary Souza Bulle Oliveira

ABSTRACT Motor neuron disease is one of the major groups of neurodegenerative diseases, mainly represented by amyotrophic lateral sclerosis. Despite wide genetic and biochemical data regarding its pathophysiological mechanisms, motor neuron disease develops under a complex network of mechanisms not restricted to the unique functions of the alpha motor neurons but which actually involve diverse functions of glial cell interaction. This review aims to expose some of the leading roles of glial cells in the physiological mechanisms of neuron-glial cell interactions and the mechanisms related to motor neuron survival linked to glial cell functions.


2018 ◽  
Vol 4 (10) ◽  
pp. eaat5847 ◽  
Author(s):  
Tatsuya Osaki ◽  
Sebastien G. M. Uzel ◽  
Roger D. Kamm

Amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease involving loss of motor neurons (MNs) and muscle atrophy, still has no effective treatment, despite much research effort. To provide a platform for testing drug candidates and investigating the pathogenesis of ALS, we developed an ALS-on-a-chip technology (i.e., an ALS motor unit) using three-dimensional skeletal muscle bundles along with induced pluripotent stem cell (iPSC)–derived and light-sensitive channelrhodopsin-2–induced MN spheroids from a patient with sporadic ALS. Each tissue was cultured in a different compartment of a microfluidic device. Axon outgrowth formed neuromuscular junctions on the muscle fiber bundles. Light was used to activate muscle contraction, which was measured on the basis of pillar deflections. Compared to a non-ALS motor unit, the ALS motor unit generated fewer muscle contractions, there was MN degradation, and apoptosis increased in the muscle. Furthermore, the muscle contractions were recovered by single treatments and cotreatment with rapamycin (a mechanistic target of rapamycin inhibitor) and bosutinib (an Src/c-Abl inhibitor). This recovery was associated with up-regulation of autophagy and degradation of TAR DNA binding protein–43 in the MNs. Moreover, administering the drugs via an endothelial cell barrier decreased the expression of P-glycoprotein (an efflux pump that transports bosutinib) in the endothelial cells, indicating that rapamycin and bosutinib cotreatment has considerable potential for ALS treatment. This ALS-on-a-chip and optogenetics technology could help to elucidate the pathogenesis of ALS and to screen for drug candidates.


Author(s):  
Davood Fathi ◽  
Shahriar Nafissi ◽  
Shahram Attarian ◽  
Christoph Neuwirth ◽  
Farzad Fatehi

Motor unit number index (MUNIX) is an electrophysiological technique to give an estimate of functioning motor neurons in a muscle. For any given neurophysiological technique for the use in clinical or research studies, reproducibility between different operators and in a single operator in different times is one of the most important qualities, which must be evaluated and approved by different examiners and centers. After its introduction, testing the reproducibility of MUNIX was the aim of many studies to show this quality of the technique. In this review, we aimed to summarize all the studies, which have been performed up to now to approve MUNIX reproducibility in amyotrophic lateral sclerosis comparing healthy individuals.


2019 ◽  
Author(s):  
Roy Maimon ◽  
Lior Ankol ◽  
Romana Weissova ◽  
Elizabeth Tank ◽  
Tal Gradus Pery ◽  
...  

AbstractAmyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease with selective dysfunction; it causes the death of motor neurons (MNs). In spite of some progress, currently no effective treatment is available for ALS. Before such treatment can be developed, a more thorough understanding of ALS pathogenesis is required. Recently, we demonstrated that ALS-mutated muscles contribute to ALS pathology via secretion of destabilizing factors such as Sema3A; these factors trigger axon degeneration and Neuromuscular Junction (NMJ) disruption. Here, we focus on the molecular mechanism by which muscle contribute to MNs loss in ALS. We identified CRMP4 as part of a retrograde death signal generated in response to muscle-secreted Sema3A, in ALS-diseased MNs. Exposing distal axons to Sema3A induces CRMP4-dynein complex formation and MN loss in both mouse (SOD1G93A) and human-derived (C9orf72) ALS models. Introducing peptides that interfere with CRMP4-dynein interaction in MN axons profoundly reduces Sema3A-dependent MN loss. Thus, we discovered a novel retrograde death signal mechanism underlying MN loss in ALS.SummaryMaimon et al. identify a novel retrograde death mechanism that contribute to MN loss in ALS, in which CRMP4-Dynein complex is form and retrogradely move along the axon.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yafa Fetfet Malada Edelstein ◽  
Yulia Solomonov ◽  
Nurit Hadad ◽  
Leenor Alfahel ◽  
Adrian Israelson ◽  
...  

Abstract Background Amyotrophic lateral sclerosis (ALS) is a fatal multifactorial neurodegenerative disease characterized by the selective death of motor neurons. Cytosolic phospholipase A2 alpha (cPLA2α) upregulation and activation in the spinal cord of ALS patients has been reported. We have previously shown that cPLA2α upregulation in the spinal cord of mutant SOD1 transgenic mice (SOD1G93A) was detected long before the development of the disease, and inhibition of cPLA2α upregulation delayed the disease’s onset. The aim of the present study was to determine the mechanism for cPLA2α upregulation. Methods Immunofluorescence analysis and western blot analysis of misfolded SOD1, cPLA2α and inflammatory markers were performed in the spinal cord sections of SOD1G93A transgenic mice and in primary motor neurons. Over expression of mutant SOD1 was performed by induction or transfection in primary motor neurons and in differentiated NSC34 motor neuron like cells. Results Misfolded SOD1 was detected in the spinal cord of 3 weeks old mutant SOD1G93A mice before cPLA2α upregulation. Elevated expression of both misfolded SOD1 and cPLA2α was specifically detected in the motor neurons at 6 weeks with a high correlation between them. Elevated TNFα levels were detected in the spinal cord lysates of 6 weeks old mutant SOD1G93A mice. Elevated TNFα was specifically detected in the motor neurons and its expression was highly correlated with cPLA2α expression at 6 weeks. Induction of mutant SOD1 in primary motor neurons induced cPLA2α and TNFα upregulation. Over expression of mutant SOD1 in NSC34 cells caused cPLA2α upregulation which was prevented by antibodies against TNFα. The addition of TNFα to NSC34 cells caused cPLA2α upregulation in a dose dependent manner. Conclusions Motor neurons expressing elevated cPLA2α and TNFα are in an inflammatory state as early as at 6 weeks old mutant SOD1G93A mice long before the development of the disease. Accumulated misfolded SOD1 in the motor neurons induced cPLA2α upregulation via induction of TNFα.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Jurate Lasiene ◽  
Koji Yamanaka

Amyotrophic lateral sclerosis (ALS) is an adult motor neuron disease characterized by premature death of upper and lower motor neurons. Two percent of ALS cases are caused by the dominant mutations in the gene for superoxide dismutase 1 (SOD1) through a gain of toxic property of mutant protein. Genetic and chimeric mice studies using SOD1 models indicate that non-neuronal cells play important roles in neurodegeneration through non-cell autonomous mechanism. We review the contribution of each glial cell type in ALS pathology from studies of the rodent models and ALS patients. Astrogliosis and microgliosis are not only considerable hallmarks of the disease, but the intensity of microglial activation is correlated with severity of motor neuron damage in human ALS. The impaired astrocytic functions such as clearance of extracellular glutamate and release of neurotrophic factors are implicated in disease. Further, the damage within astrocytes and microglia is involved in accelerated disease progression. Finally, other glial cells such as NG2 cells, oligodendrocytes and Schwann cells are under the investigation to determine their contribution in ALS. Accumulating knowledge of active role of glial cells in the disease should be carefully applied to understanding of the sporadic ALS and development of therapy targeted for glial cells.


2017 ◽  
Vol 56 (2) ◽  
pp. 202-206 ◽  
Author(s):  
Stephan Grimaldi ◽  
Lauréline Duprat ◽  
Aude-Marie Grapperon ◽  
Annie Verschueren ◽  
Emilien Delmont ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3426
Author(s):  
Elisabeth Traiffort ◽  
Séverine Morisset-Lopez ◽  
Mireille Moussaed ◽  
Amina Zahaf

Motor neurons and their axons reaching the skeletal muscle have long been considered as the best characterized targets of the degenerative process observed in amyotrophic lateral sclerosis (ALS). However, the involvement of glial cells was also more recently reported. Although oligodendrocytes have been underestimated for a longer time than other cells, they are presently considered as critically involved in axonal injury and also conversely constitute a target for the toxic effects of the degenerative neurons. In the present review, we highlight the recent advances regarding oligodendroglial cell involvement in the pathogenesis of ALS. First, we present the oligodendroglial cells, the process of myelination, and the tight relationship between axons and myelin. The histological abnormalities observed in ALS and animal models of the disease are described, including myelin defects and oligodendroglial accumulation of pathological protein aggregates. Then, we present data that establish the existence of dysfunctional and degenerating oligodendroglial cells, the chain of events resulting in oligodendrocyte degeneration, and the most recent molecular mechanisms supporting oligodendrocyte death and dysfunction. Finally, we review the arguments in support of the primary versus secondary involvement of oligodendrocytes in the disease and discuss the therapeutic perspectives related to oligodendrocyte implication in ALS pathogenesis.


2016 ◽  
Vol 595 (3) ◽  
pp. 647-661 ◽  
Author(s):  
Danielle Arbour ◽  
Christine Vande Velde ◽  
Richard Robitaille

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 249
Author(s):  
Mehdi Ghasemi ◽  
Kiandokht Keyhanian ◽  
Catherine Douthwright

Since the discovery of the chromosome 9 open reading frame 72 (C9orf72) repeat expansion mutation in 2011 as the most common genetic abnormality in amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig’s disease) and frontotemporal dementia (FTD), progress in understanding the signaling pathways related to this mutation can only be described as intriguing. Two major theories have been suggested—(i) loss of function or haploinsufficiency and (ii) toxic gain of function from either C9orf72 repeat RNA or dipeptide repeat proteins (DPRs) generated from repeat-associated non-ATG (RAN) translation. Each theory has provided various signaling pathways that potentially participate in the disease progression. Dysregulation of the immune system, particularly glial cell dysfunction (mainly microglia and astrocytes), is demonstrated to play a pivotal role in both loss and gain of function theories of C9orf72 pathogenesis. In this review, we discuss the pathogenic roles of glial cells in C9orf72 ALS/FTD as evidenced by pre-clinical and clinical studies showing the presence of gliosis in C9orf72 ALS/FTD, pathologic hallmarks in glial cells, including TAR DNA-binding protein 43 (TDP-43) and p62 aggregates, and toxicity of C9orf72 glial cells. A better understanding of these pathways can provide new insights into the development of therapies targeting glial cell abnormalities in C9orf72 ALS/FTD.


Sign in / Sign up

Export Citation Format

Share Document