scholarly journals Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons

2018 ◽  
Vol 4 (10) ◽  
pp. eaat5847 ◽  
Author(s):  
Tatsuya Osaki ◽  
Sebastien G. M. Uzel ◽  
Roger D. Kamm

Amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease involving loss of motor neurons (MNs) and muscle atrophy, still has no effective treatment, despite much research effort. To provide a platform for testing drug candidates and investigating the pathogenesis of ALS, we developed an ALS-on-a-chip technology (i.e., an ALS motor unit) using three-dimensional skeletal muscle bundles along with induced pluripotent stem cell (iPSC)–derived and light-sensitive channelrhodopsin-2–induced MN spheroids from a patient with sporadic ALS. Each tissue was cultured in a different compartment of a microfluidic device. Axon outgrowth formed neuromuscular junctions on the muscle fiber bundles. Light was used to activate muscle contraction, which was measured on the basis of pillar deflections. Compared to a non-ALS motor unit, the ALS motor unit generated fewer muscle contractions, there was MN degradation, and apoptosis increased in the muscle. Furthermore, the muscle contractions were recovered by single treatments and cotreatment with rapamycin (a mechanistic target of rapamycin inhibitor) and bosutinib (an Src/c-Abl inhibitor). This recovery was associated with up-regulation of autophagy and degradation of TAR DNA binding protein–43 in the MNs. Moreover, administering the drugs via an endothelial cell barrier decreased the expression of P-glycoprotein (an efflux pump that transports bosutinib) in the endothelial cells, indicating that rapamycin and bosutinib cotreatment has considerable potential for ALS treatment. This ALS-on-a-chip and optogenetics technology could help to elucidate the pathogenesis of ALS and to screen for drug candidates.

2021 ◽  
Vol 16 (10) ◽  
pp. 1934578X2110308
Author(s):  
Fahad Hassan Shah ◽  
Song Ja Kim

Purpose: Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative condition, in which motor neurons start to degenerate due to the accumulation of protein aggregates in the neuron cytoplasm. The formation of aggregates causes neurotoxicity, facilitated by the N-terminal domain (NTD) of the transactive response DNA-binding protein-43 (TDP-43). Therapies used to treat ALS manage secondary symptoms, but do not stop the activity of the rogue NTD domain of TDP-43. Therefore, new drug candidates should be designed to deal efficiently with this disease by inhibiting the domains involved in the development of ALS. This study determined the chemical affinity of aromatic medicinal compounds with NTD. Screening of 1323 medicinal compounds was conducted with PYRX 0.9 software against NTD. Compounds obtained from this analysis were further used to predict absorption, distribution, metabolism, excretion, and toxic (ADMET) properties and their effect on major gene targets of ALS. Results: From 1300 + compounds, acetovanillone showed binding affinity for NTD and had good ADMET and drug likeness attributes. This compound reduced the expression of CXCL2, NOP56, and SOD1 genes implicated in ALS pathogenesis. Conclusion: These results concluded that acetovanillone is a candidate drug for in vitro and clinical studies into the exploitation of drugs within ALS therapeutics.


2017 ◽  
Vol 9 (391) ◽  
pp. eaaf3962 ◽  
Author(s):  
Keiko Imamura ◽  
Yuishin Izumi ◽  
Akira Watanabe ◽  
Kayoko Tsukita ◽  
Knut Woltjen ◽  
...  

Amyotrophic lateral sclerosis (ALS), a fatal disease causing progressive loss of motor neurons, still has no effective treatment. We developed a phenotypic screen to repurpose existing drugs using ALS motor neuron survival as readout. Motor neurons were generated from induced pluripotent stem cells (iPSCs) derived from an ALS patient with a mutation in superoxide dismutase 1 (SOD1). Results of the screen showed that more than half of the hits targeted the Src/c-Abl signaling pathway. Src/c-Abl inhibitors increased survival of ALS iPSC-derived motor neurons in vitro. Knockdown of Src or c-Abl with small interfering RNAs (siRNAs) also rescued ALS motor neuron degeneration. One of the hits, bosutinib, boosted autophagy, reduced the amount of misfolded mutant SOD1 protein, and attenuated altered expression of mitochondrial genes. Bosutinib also increased survival in vitro of ALS iPSC-derived motor neurons from patients with sporadic ALS or other forms of familial ALS caused by mutations in TAR DNA binding protein (TDP-43) or repeat expansions in C9orf72. Furthermore, bosutinib treatment modestly extended survival of a mouse model of ALS with an SOD1 mutation, suggesting that Src/c-Abl may be a potentially useful target for developing new drugs to treat ALS.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Yoshiaki Furukawa

Dominant mutations in a Cu, Zn-superoxide dismutase (SOD1) gene cause a familial form of amyotrophic lateral sclerosis (ALS). While it remains controversial how SOD1 mutations lead to onset and progression of the disease, manyin vitroandin vivostudies have supported a gain-of-toxicity mechanism where pathogenic mutations contribute to destabilizing a native structure of SOD1 and thus facilitate misfolding and aggregation. Indeed, abnormal accumulation of SOD1-positive inclusions in spinal motor neurons is a pathological hallmark in SOD1-related familial ALS. Furthermore, similarities in clinical phenotypes and neuropathology of ALS cases with and without mutations insod1gene have implied a disease mechanism involving SOD1 common to all ALS cases. Although pathogenic roles of wild-type SOD1 in sporadic ALS remain controversial, recent developments of novel SOD1 antibodies have made it possible to characterize wild-type SOD1 under pathological conditions of ALS. Here, I have briefly reviewed recent progress on biochemical and immunohistochemical characterization of wild-type SOD1 in sporadic ALS cases and discussed possible involvement of wild-type SOD1 in a pathomechanism of ALS.


Author(s):  
Davood Fathi ◽  
Shahriar Nafissi ◽  
Shahram Attarian ◽  
Christoph Neuwirth ◽  
Farzad Fatehi

Motor unit number index (MUNIX) is an electrophysiological technique to give an estimate of functioning motor neurons in a muscle. For any given neurophysiological technique for the use in clinical or research studies, reproducibility between different operators and in a single operator in different times is one of the most important qualities, which must be evaluated and approved by different examiners and centers. After its introduction, testing the reproducibility of MUNIX was the aim of many studies to show this quality of the technique. In this review, we aimed to summarize all the studies, which have been performed up to now to approve MUNIX reproducibility in amyotrophic lateral sclerosis comparing healthy individuals.


2021 ◽  
Author(s):  
Sandra Diaz-Garcia ◽  
Vivian I. Ko ◽  
Sonia Vazquez-Sanchez ◽  
Ruth Chia ◽  
Olubankole Aladesuyi Arogundade ◽  
...  

Amyotrophic lateral sclerosis is a progressive fatal neurodegenerative disease caused by loss of motor neurons and characterized neuropathologically in almost all cases by nuclear depletion and cytoplasmic aggregation of TDP-43, a nuclear RNA binding protein (RBP). We identified ELAVL3 as one of the most downregulated genes in our transcriptome profiles of laser captured microdissection of motor neurons from sporadic ALS nervous systems and the top dysregulated RBPs. Neuropathological characterizations showed ELAVL3 nuclear depletion in a great percentage of remnant motor neurons, sometimes accompanied by cytoplasmic accumulations. These abnormalities were common in sporadic cases with and without intermediate expansions in ATXN2 and familial cases carrying mutations in C9orf72 and SOD1. Depletion of ELAVL3 occurred at both the RNA and protein levels and a short protein isoform was identified but it is not related to a TDP-43-dependent cryptic exon in intron 3. Strikingly, ELAVL3 abnormalities were more frequent than TDP-43 abnormalities and occurred in motor neurons still with normal nuclear TDP-43 present, but all neurons with abnormal TDP-43 also had abnormal ELAVL3. In a neuron-like cell culture model using SH-SY5Y cells, ELAVL3 mislocalization occurred weeks before TDP-43 abnormalities were seen. We interrogated genetic databases but did not identify association of ELAVL3 genetic structure associated with ALS. Taken together, these findings suggest that ELAVL3 is an important RBP in ALS pathogenesis acquired early and the neuropathological data suggest it is involved by loss of function rather than cytoplasmic toxicity.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2773
Author(s):  
Hsiao-Chien Ting ◽  
Hui-I Yang ◽  
Horng-Jyh Harn ◽  
Ing-Ming Chiu ◽  
Hong-Lin Su ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a progressive nervous system disease that causes motor neuron (MN) degeneration and results in patient death within a few years. To recapitulate the cytopathies of ALS patients’ MNs, SOD1G85R mutant and corrected SOD1G85G isogenic-induced pluripotent stem cell (iPSC) lines were established. Two SOD1 mutant ALS (SOD1G85R and SOD1D90A), two SOD1 mutant corrected (SOD1G85G and SOD1D90D), and one sporadic ALS iPSC lines were directed toward MNs. After receiving ~90% purity for MNs, we first demonstrated that SOD1G85R mutant ALS MNs recapitulated ALS-specific nerve fiber aggregates, similar to SOD1D90A ALS MNs in a previous study. Moreover, we found that both SOD1 mutant MNs showed ALS-specific neurite degenerations and neurotransmitter-induced calcium hyperresponsiveness. In a small compound test using these MNs, we demonstrated that gastrodin, a major ingredient of Gastrodia elata, showed therapeutic effects that decreased nerve fiber cytopathies and reverse neurotransmitter-induced hyperresponsiveness. The therapeutic effects of gastrodin applied not only to SOD1 ALS MNs but also to sporadic ALS MNs and SOD1G93A ALS mice. Moreover, we found that coactivation of the GSK3β and IGF-1 pathways was a mechanism involved in the therapeutic effects of gastrodin. Thus, the coordination of compounds that activate these two mechanisms could reduce nerve fiber cytopathies in SOD1 ALS MNs. Interestingly, the therapeutic role of GSK3β activation on SOD1 ALS MNs in the present study was in contrast to the role previously reported in research using cell line- or transgenic animal-based models. In conclusion, we identified in vitro ALS-specific nerve fiber and neurofunctional markers in MNs, which will be useful for drug screening, and we used an iPSC-based model to reveal novel therapeutic mechanisms (including GSK3β and IGF-1 activation) that may serve as potential targets for ALS therapy.


2020 ◽  
Vol 6 (1) ◽  
pp. e394
Author(s):  
Julia L. Keith ◽  
Emily Swinkin ◽  
Andrew Gao ◽  
Samira Alminawi ◽  
Ming Zhang ◽  
...  

ObjectiveTo present the postmortem neuropathologic report of a patient with a CHCHD10 mutation exhibiting an amyotrophic lateral sclerosis (ALS) clinical phenotype.MethodsA 54-year-old man without significant medical history or family history presented with arm weakness, slowly progressed over 19 years to meet the El Escorial criteria for clinically probable ALS with bulbar and respiratory involvement, and was found to have a CHCHD10 p.R15L mutation. Postmortem neuropathologic examination took place including immunohistochemical staining with CHCHD10, and double immunofluorescence combining CHCHD10 with TDP43 and neurofilament was performed and the results were compared with normal controls and sporadic ALS cases.ResultsPostmortem examination of the CHCHD10 mutation carrier showed severe loss of hypoglossal and anterior horn motor neurons, mild corticospinal tract degeneration, and a relative lack of TDP43 immunopathology. CHCHD10 immunohistochemistry for the 3 controls and the 5 sporadic ALS cases showed strong neuronal cytoplasmic and axonal labeling, with the CHCHD10 mutation carrier also having numerous CHCHD10 aggregates within their anterior horns. These aggregates may be related to the CHCHD10 aggregates recently described to cause mitochondrial degeneration and disease in a tissue-selective toxic gain-of-function fashion in a CHCHD10 knock-in mouse model. The CHCHD10 aggregates did not colocalize with TDP43 and were predominantly extracellular on double immunofluorescence labeling with neurofilament.ConclusionsThe neuropathology of CHCHD10 mutated ALS includes predominantly lower motor neuron degeneration, absent TDP43 immunopathology, and aggregates of predominantly extracellular CHCHD10, which do not contain TDP43.


2020 ◽  
Vol 79 (4) ◽  
pp. 370-377 ◽  
Author(s):  
Kensuke Ikenaka ◽  
Shinsuke Ishigaki ◽  
Yohei Iguchi ◽  
Kaori Kawai ◽  
Yusuke Fujioka ◽  
...  

Abstract Alterations of RNA metabolism caused by mutations in RNA-binding protein genes, such as transactivating DNA-binding protein-43 (TDP-43) and fused in sarcoma (FUS), have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). Unlike the accumulation of TDP43, which is accepted as a pathological hall mark of sporadic ALS (sALS), FUS pathology in sALS is still under debate. Although immunoreactive inclusions of FUS have been detected in sALS patients previously, the technical limitation of signal detection, including the necessity of specific antigen retrieval, restricts our understanding of FUS-associated ALS pathology. In this study, we applied a novel detection method using a conventional antigen retrieval technique with Sudan Black B treatment to identify FUS-positive inclusions in sALS patients. We classified pathological motor neurons into 5 different categories according to the different aggregation characteristics of FUS and TDP-43. Although the granular type was more dominant for inclusions with TDP-43, the skein-like type was more often observed in FUS-positive inclusions, suggesting that these 2 proteins undergo independent aggregation processes. Moreover, neurons harboring FUS-positive inclusions demonstrated substantially reduced expression levels of dynactin-1, a retrograde motor protein, indicating that perturbation of nucleocytoplasmic transport is associated with the formation of cytoplasmic inclusions of FUS in sALS.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Jurate Lasiene ◽  
Koji Yamanaka

Amyotrophic lateral sclerosis (ALS) is an adult motor neuron disease characterized by premature death of upper and lower motor neurons. Two percent of ALS cases are caused by the dominant mutations in the gene for superoxide dismutase 1 (SOD1) through a gain of toxic property of mutant protein. Genetic and chimeric mice studies using SOD1 models indicate that non-neuronal cells play important roles in neurodegeneration through non-cell autonomous mechanism. We review the contribution of each glial cell type in ALS pathology from studies of the rodent models and ALS patients. Astrogliosis and microgliosis are not only considerable hallmarks of the disease, but the intensity of microglial activation is correlated with severity of motor neuron damage in human ALS. The impaired astrocytic functions such as clearance of extracellular glutamate and release of neurotrophic factors are implicated in disease. Further, the damage within astrocytes and microglia is involved in accelerated disease progression. Finally, other glial cells such as NG2 cells, oligodendrocytes and Schwann cells are under the investigation to determine their contribution in ALS. Accumulating knowledge of active role of glial cells in the disease should be carefully applied to understanding of the sporadic ALS and development of therapy targeted for glial cells.


2020 ◽  
Author(s):  
Anu Mary Varghese ◽  
Mausam Ghosh ◽  
Savita Kumari Bhagat ◽  
K Vijayalakshmi ◽  
Veeramani Preethish-Kumar ◽  
...  

Abstract Background Cerebrospinal fluid from Amyotrophic Lateral Sclerosis patients (ALS-CSF) induces neurodegenerative changes in motor neurons and gliosis in sporadic ALS models. Search for identification of toxic factor(s) in CSF revealed an enhancement in the level and enzyme activity of chitotriosidase (CHIT-1). Here, we have investigated its upregulation in a large cohort of samples and more importantly its role in ALS pathogenesis in a rat model. Methods CHIT-1 level in CSF samples from ALS (n=158), non-ALS (n=12) and normal (n=48) subjects were measured using ELISA. Enzyme activity was also assessed (ALS, n=56; non-ALS, n=10 and normal-CSF, n=45). Recombinant CHIT-1 was intrathecally injected into Wistar rat neonates. Lumbar spinal cord sections were stained for Iba1, Glial Fibrillary Acidic Protein and Choline Acetyl Transferase to identify microglia, astrocytes and motor neurons respectively after 48 hrs of injection. Levels of tumor necrosis factor-α and interleukin-6 was measured by ELISA. Findings CHIT-1 level in ALS-CSF samples was increased by twenty folds and it can distinguish ALS patients with a sensitivity of 87% and specificity of 83·3% at a cut off level of 1405·43 pg/ml. Enzyme activity of CHIT-1 was also fifteen folds higher in ALS-CSF and has a sensitivity of 80·4% and specificity of 80% at cut off value of 0·1077989μmol/μl/min. Combining CHIT-1 level and activity together gave a positive predictive value of 97·78% and negative predictive value of 100%. Administration of CHIT-1 increased microglial numbers and astrogliosis in the ventral horn with a concomitant increase in the levels of pro-inflammatory cytokines. Amoeboid shaped microglial and astroglial cells were also present around the central canal. CHIT-1 administration also resulted in the reduction of motor neurons.Conclusions CHIT-1, an early diagnostic biomarker of sporadic ALS activates glia priming them to attain a toxic phenotype resulting in neuroinflammation leading to motor neuronal death.


Sign in / Sign up

Export Citation Format

Share Document