scholarly journals Colletotrichum spp. from soybean cause disease on lupin but can also induce plant growth-promoting effects

2020 ◽  
Author(s):  
Louisa Wirtz ◽  
Nelson Sidnei Massola Júnior ◽  
Renata Rebellato Linhares de Castro ◽  
Brigitte Ruge-Wehling ◽  
Ulrich Schaffrath ◽  
...  

AbstractProtein crop plants such as soybean and lupin attract increasing attention because of their potential use as forage, green manure or for the production of oil and protein for human consumption. While soybean production only recently gained more importance in Germany and within the whole EU in frame of protein strategies, lupin production already is well established in Germany. The cultivation of lupins is impeded by the hemibiotrophic ascomycete Colletotrichum lupini, the causing agent of anthracnose disease. Worldwide, soybean is also a host for a variety of Colletotrichum species, but so far this seems not to be the case in Germany. Cross-virulence between lupin and soybean infecting isolates is a potential threat, especially taking into consideration the overlap of possible soybean and lupine growing areas in Germany. To address this question, we systematically investigated the interaction of different Colletotrichum species isolated from soybean in Brazil on actual German soybean and lupin plant cultivars. Conversely, we tested the interaction of a German field isolate of C. lupini with soybean. Under controlled conditions, Colletotrichum species from soybean and lupin were able to cross-infect the other host plant with varying degrees of virulence, thus underpinning the potential risk of increased anthracnose diseases in the future. Interestingly, we observed a pronounced plant growth-promoting effect for some host-pathogen combinations which might open the route to the use of beneficial biological agents in lupine and soybean production.

2021 ◽  
Vol 9 (6) ◽  
pp. 1130
Author(s):  
Louisa Wirtz ◽  
Nelson Sidnei Massola Júnior ◽  
Renata Rebellato Linhares de Castro ◽  
Brigitte Ruge-Wehling ◽  
Ulrich Schaffrath ◽  
...  

Protein crop plants such as soybean and lupin are attracting increasing attention because of their potential use as forage, green manure, or for the production of oil and protein for human consumption. Whereas soybean production only recently gained more importance in Germany and within the whole EU in frame of protein strategies, lupin production is already well-established in Germany. The cultivation of lupins is impeded by the hemibiotrophic ascomycete Colletotrichum lupini, the causal agent of anthracnose disease. Worldwide, soybean is also a host for a variety of Colletotrichum species, but so far, this seems to not be the case in Germany. Cross-virulence between lupin- and soybean-infecting isolates is a potential threat, especially considering the overlap of possible soybean and lupin growing areas in Germany. To address this question, we systematically investigated the interaction of different Colletotrichum species isolated from soybean in Brazil on German soybean and lupin plant cultivars. Conversely, we tested the interaction of a German field isolate of C. lupini with soybean. Under controlled conditions, Colletotrichum species from soybean and lupin were able to cross-infect the other host plant with varying degrees of virulence, thus underpinning the potential risk of increased anthracnose diseases in the future. Interestingly, we observed a pronounced plant growth-promoting effect for some host–pathogen combinations, which might open the route to the use of beneficial biological agents in lupin and soybean production.


OENO One ◽  
2021 ◽  
Vol 55 (4) ◽  
pp. 145-157
Author(s):  
Mónica Oyuela Aguilar ◽  
Florencia Álvarez ◽  
Daniela Medeot ◽  
Edgardo Jofré ◽  
Liliana Semorile ◽  
...  

The rhizosphere-associated microbiome has diverse functions that support plant growth and health, varying among plant species, vegetation growth stages and environmental habitats. This microbiome includes a group of bacteria denominated plant growth-promoting rhizobacteria (PGPR) which can colonize plant roots. Certain PGPR isolates improve the ability of plants to adapt to a stressful environment. In this study, we collected and characterised the rhizosphere-associated bacteria, or epiphytic rhizobacteria, from Malbec and Cabernet-Sauvignon vineyards from the main wine-producing provinces of Argentina to analyse their potential use as biologic fertilisers and/or as pathogen-control agents. A total of 170 bacterial isolates were obtained, distributed into eleven different genera and classified into three phyla, Proteobacteria, Actinobacteria and Firmicutes. The in vitro analysis for plant-growth-promoting (PGP) activities demonstrated that a significant number of bacterial isolates had one or more of these traits. The Pseudomonas was the genus with the highest number of isolates and PGP activities, followed by the Arthrobacter, Serratia, Bacillus andPantoea. We observed that bacterial isolates identified as Bacillus exhibited a remarkable production of hydrolytic enzymes related to biocontrol activities. Biocontrol trials from the Bacillus collection revealed that at least five isolates were able to inhibit the fungal growth of Botrytis cinerea and Alternaria alternata. The results obtained suggest the biological potential of each isolate and the relevance of proceeding to greenhouse and field assays to obtain long-term environmentally compatible bio-products for vineyard management.


2017 ◽  
Vol 199 (3) ◽  
pp. 513-517 ◽  
Author(s):  
Van T. K. Pham ◽  
Hans Rediers ◽  
Maarten G. K. Ghequire ◽  
Hiep H. Nguyen ◽  
René De Mot ◽  
...  

2019 ◽  
Vol 24 (1) ◽  
pp. 119-125 ◽  
Author(s):  
Yeon-Ju Kim ◽  
Jaewon Lim ◽  
Johan Sukweenadhi ◽  
Ji Woong Seok ◽  
Sang-Won Lee ◽  
...  

2021 ◽  
Vol 8 (4) ◽  
pp. 104-110
Author(s):  
Di Barbaro Gabriela ◽  
Andrada Horacio ◽  
Batallan Morales Silvana ◽  
Espeche Acosta Eliana ◽  
Rizo Melisa ◽  
...  

To determine the effect of Azospirillum brasilense and soil mycorrhizal fungi on the nutrition of the Jerusalem artichoke crop (Helianthus tuberosus L.), evaluations of agronomic parameters and the health status of the plants were carried out, under greenhouse conditions. The tests were carried out, at the moment of the implantation of the culture: the tubers were inoculated with A. brasilense and with native mycorrhizal fungi, generating four treatments including the control and the co-inoculation of the consortium of the microorganisms under study (T0: control or control without inoculation; T1: inoculation with native A. brasilense; T2: inoculation with native mycorrhizal fungi and T3: joint inoculation with A. brasilense and native mycorrhizal fungi. The results indicate that co-inoculation with A. brasilense and with native mycorrhizal fungi increased plant growth in height, leaf area, biomass, dry matter, and yields significantly in greenhouse production. It was determined that the application of the selected microorganisms has a plant growth-promoting effect, increasing the productivity of cultivated topinambur in the greenhouse


Sign in / Sign up

Export Citation Format

Share Document