scholarly journals Adhesive Contact Between Cylindrical (Ebola) and Spherical (SARS-CoV-2) Viral Particles and a Cell Membrane

Author(s):  
Jiajun Wang ◽  
Nicole Lapinski ◽  
X. Frank Zhang ◽  
Anand Jagota

AbstractA critical event during the process of cell infection by a viral particle is attachment, which is driven by adhesive interactions and resisted by bending and tension. The biophysics of this process has been studied extensively but the additional role of externally applied force or displacement has generally been neglected. In this work we study the adhesive force-displacement response of viral particles against a cell membrane. We have built two models: one in which the viral particle is cylindrical (say, representative of filamentous virus such as Ebola) and another in which it is spherical (such as SARS-CoV-2 and Zika). Our interest is in initial adhesion, in which case deformations are small and the mathematical model for the system can be simplified considerably. The parameters that characterize the process combine into two dimensionless groups that represent normalized membrane bending stiffness and tension. In the limit where bending dominates, for sufficiently large values of normalized bending stiffness, there is no adhesion between viral particles and the cell membrane without applied force. (The zero-external-force contact width and pull-off force are both zero.) For large values of normalized membrane tension, the adhesion between virus and cell membrane is weak but stable. (The contact width at zero external force has a small value.) Our results for pull-off force and zero force contact width help to quantify conditions that could aid the development of therapies based on denying the virus entry into the cell by blocking its initial adhesion.

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Jiajun Wang ◽  
Nicole Lapinski ◽  
Xiaohui Zhang ◽  
Anand Jagota

2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Olivier Leymarie ◽  
Leslie Lepont ◽  
Margaux Versapuech ◽  
Delphine Judith ◽  
Sophie Abelanet ◽  
...  

ABSTRACTHIV-1 infection of macrophages leads to the sequestration of newly formed viruses in intracellular plasma membrane-connected structures termed virus-containing compartments (VCCs), where virions remain infectious and hidden from immune surveillance. The cellular restriction factor bone marrow stromal cell antigen 2 (BST2), which prevents HIV-1 dissemination by tethering budding viral particles at the plasma membrane, can be found in VCCs. The HIV-1 accessory protein Vpu counteracts the restriction factor BST2 by downregulating its expression and removing it from viral budding sites. Numerous studies described these Vpu countermeasures in CD4+T cells or model cell lines, but the interplay between Vpu and BST2 in VCC formation and HIV-1 production in macrophages is less explored. Here, we show that Vpu expression in HIV-1-infected macrophages enhances viral release. This effect is related to Vpu’s ability to circumvent BST2 antiviral activity. We show that in absence of Vpu, BST2 is enriched in VCCs and colocalizes with capsid p24, whereas Vpu expression significantly reduces the presence of BST2 in these compartments. Furthermore, our data reveal that BST2 is dispensable for the formation of VCCs and that Vpu expression impacts the volume of these compartments. This Vpu activity partly depends on BST2 expression and requires the integrity of the Vpu transmembrane domain, the dileucine-like motif E59XXXLV64and phosphoserines 52 and 56 of Vpu. Altogether, these results highlight that Vpu controls the volume of VCCs and promotes HIV-1 release from infected macrophages.IMPORTANCEHIV-1 infection of macrophages leads to the sequestration of newly formed viruses in virus-containing compartments (VCCs), where virions remain infectious and hidden from immune surveillance. The restriction factor BST2, which prevents HIV-1 dissemination by tethering budding viral particles, can be found in VCCs. The HIV-1 Vpu protein counteracts BST2. This study explores the interplay between Vpu and BST2 in the viral protein functions on HIV-1 release and viral particle sequestration in VCCs in macrophages. The results show that Vpu controls the volume of VCCs and favors viral particle release. These Vpu functions partly depend on Vpu’s ability to antagonize BST2. This study highlights that the transmembrane domain of Vpu and two motifs of the Vpu cytoplasmic domain are required for these functions. These motifs were notably involved in the control of the volume of VCCs by Vpu but were dispensable for the prevention of the specific accumulation of BST2 in these structures.


Physics Today ◽  
2010 ◽  
Vol 63 (9) ◽  
pp. 17-17
Author(s):  
Mark Wilson
Keyword(s):  

1967 ◽  
Vol 17 (2) ◽  
pp. 246-251 ◽  
Author(s):  
N.L. Gershfeld ◽  
R.J. Good
Keyword(s):  

1985 ◽  
Vol 82 (11) ◽  
pp. 3688-3692 ◽  
Author(s):  
D. A. Eppstein ◽  
Y. V. Marsh ◽  
M. van der Pas ◽  
P. L. Felgner ◽  
A. B. Schreiber

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Hsiu-Yang Tseng ◽  
Chiu-Jen Chen ◽  
Zong-Lin Wu ◽  
Yong-Ming Ye ◽  
Guo-Zhen Huang

Cell-membrane permeability to water (Lp) and cryoprotective agents (Ps) of a cell type is a crucial cellular information for achieving optimal cryopreservation in the biobanking industry. In this work, a...


FEBS Open Bio ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. 1338-1349
Author(s):  
Nozomu Takahashi ◽  
Wataru Onozuka ◽  
Seiji Watanabe ◽  
Keisuke Wakasugi

Sign in / Sign up

Export Citation Format

Share Document