scholarly journals Acetylcholine regulates pulmonary inflammation and facilitates the transition from active immunity to tissue repair during respiratory viral infection

2020 ◽  
Author(s):  
Alexander P. Horkowitz ◽  
Ashley V. Schwartz ◽  
Carlos A. Alvarez ◽  
Edgar B. Herrera ◽  
Marilyn L. Thoman ◽  
...  

ABSTRACTInflammatory control is critical to recovery from respiratory viral infection. Acetylcholine (ACh) secreted from non-neuronal sources, including lymphocytes, plays an important, albeit underappreciated, role in regulating immune-mediated inflammation. This study was designed to explore the role of ACh in acute viral infection and recovery. Using the murine model of influenza A, cholinergic status in the lungs and airway was examined over the course of infection and recovery. The results showed that airway ACh remained constant through the early stage of infection and increased during the peak of the acquired immune response. As the concentration of ACh increased, cholinergic lymphocytes appeared in the airway and lungs. Cholinergic capacity was found primarily in CD4 T cells, but also in B cells and CD8 T cells. The cholinergic CD4+ T cells bound to influenza-specific tetramers at the same frequency as their conventional (i.e., non-cholinergic) counterparts. In addition, they were retained in the lungs throughout the recovery phase and could still be detected in the resident memory regions of the lung up to two months after infection. Histologically, cholinergic lymphocytes were found in direct physical contact with activated macrophages throughout the lung. When ACh production was inhibited, mice exhibited increased tissue inflammation, altered lung architecture, and delayed recovery. Together, these findings point to a previously unrecognized role for ACh in the transition from active immunity to recovery and pulmonary repair following respiratory viral infection.

Blood ◽  
2010 ◽  
Vol 115 (8) ◽  
pp. 1564-1571 ◽  
Author(s):  
Mark K. Lafferty ◽  
Lingling Sun ◽  
Leon DeMasi ◽  
Wuyuan Lu ◽  
Alfredo Garzino-Demo

AbstractWe have identified a postentry CCR6-dependent mechanism of inhibition of HIV occurring at an early stage of infection mediated by the induction of the host restriction factor apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G). We observed induction of APOBEC3G expression only in CCR6+ cells but not in cells treated with the G inhibitory (Gi) pathway inhibitor pertussis toxin. CCR6 is highly expressed on peripheral blood CD4+CCR5+ memory T cells and by 2 populations of CD4+ T cells within the gut, α4β7+ and T helper type 17, that have been implicated in cell-to-cell spread of HIV and enhanced restoration of CD4+ T cells within gut-associated lymphoid tissue, respectively. This novel CCR6-mediated mechanism of inhibition allows the identification of pathways that induce intrinsic immunity to HIV, which could be useful in devising novel therapeutics that selectively target CCR6+ cells.


2017 ◽  
Vol 8 ◽  
Author(s):  
Jennifer A. Juno ◽  
David van Bockel ◽  
Stephen J. Kent ◽  
Anthony D. Kelleher ◽  
John J. Zaunders ◽  
...  
Keyword(s):  
T Cells ◽  

Cell Reports ◽  
2020 ◽  
Vol 31 (13) ◽  
pp. 107827 ◽  
Author(s):  
Kristen E. Pauken ◽  
Jernej Godec ◽  
Pamela M. Odorizzi ◽  
Keturah E. Brown ◽  
Kathleen B. Yates ◽  
...  

2020 ◽  
Vol 5 (51) ◽  
pp. eabb5590 ◽  
Author(s):  
Heather M. Ren ◽  
Elizabeth M. Kolawole ◽  
Mingqiang Ren ◽  
Ge Jin ◽  
Colleen S. Netherby-Winslow ◽  
...  

Development of tissue-resident memory (TRM) CD8 T cells depends on CD4 T cells. In polyomavirus central nervous system infection, brain CXCR5hi PD-1hi CD4 T cells produce interleukin-21 (IL-21), and CD8 T cells lacking IL-21 receptors (IL21R−/−) fail to become bTRM. IL-21+ CD4 T cells exhibit elevated T cell receptor (TCR) affinity and higher TCR density. IL21R−/− brain CD8 T cells do not express CD103, depend on vascular CD8 T cells for maintenance, are antigen recall defective, and lack TRM core signature genes. CD4 T cell–deficient and IL21R−/− brain CD8 T cells show similar deficiencies in expression of genes for oxidative metabolism, and intrathecal delivery of IL-21 to CD4 T cell–depleted mice restores expression of electron transport genes in CD8 T cells to wild-type levels. Thus, high-affinity CXCR5hi PD-1hi CD4 T cells in the brain produce IL-21, which drives CD8 bTRM differentiation in response to a persistent viral infection.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4132-4132
Author(s):  
Yoon Seok Choi ◽  
Jeewon Lee ◽  
Ik-Chan Song ◽  
Deog-Yeon Jo ◽  
Eui-Cheol Shin

Abstract FoxP3+ CD4+CD25hi regulatory T (Treg) cells play a major role in maintaining the immune homeostasis by preventing the activation of self-reactive T cells as well as in controlling a series of immune responses in viral infections. Recent studies suggest that lineage-commitment of CD4+T cells, including Treg cells, is not a fixed fate, rather a status with a wide range of plasticity. Functional changes and lineage-plasticity of Treg cells during acute viral infection, especially of human, have not been reported so far. Herein, we investigated whether Treg cells show the functional plasticity and whether such changes can affect the regulation of immunopathology in a human acute viral infection. As a model of human acute viral infection, we used a cohort of patients with acute hepatitis A (AHA), since tissue (liver) injury in AHA is mediated exclusively by activated T cells, not by direct cytopathic effect of virus. To assess the plasticity of Treg cell lineage, first, we examined the production of a variety of inflammatory cytokines from Treg cells following T cell receptor (TCR) stimulation of peripheral blood lymphocytes with anti-CD3/CD28 antibody, using intracellular cytokine staining and multicolor flow cytometry. We found that a significant proportion of FoxP3+ CD4+CD25hi Treg cells produced TNF-α following TCR stimulation in patients with AHA, but not in heathy subjects. Analyses at multiple time points during the course of infection showed that TNF-α production from Treg cells decreased in convalescent phase. Likewise, we observed that liver-infiltrating Treg cells also produced TNF-α after TCR stimulation. Moreover, highly-purified CD4+CD25hiCD127lo/-Treg cells could also produce TNF-α following TCR stimulation, indicating that Treg cells of AHA patients can produce TNF-α in direct response to TCR stimulation. Next, to exclude the possibility that TNF-α might be secreted from transiently FoxP3-expressing activated non-Treg CD4+ T cells, we examined the expression level of CD127 on TNF-α-secreting FoxP3+ CD4+ T cells. TNF-α+ Treg cells expressed CD127 in the level similar to conventional TNF-α- counterpart, and CD127 expression levels of both Treg populations were much lower than FoxP3- CD4+ T cells. Furthermore, DNA methylation analysis of Treg cell-specific demethylated region (TSDR) after sorting TNF-α+ Treg cells revealed completely demethylated pattern in highly conserved CpG island of FOXP3 gene. These findings support that TNF-α is produced from bona fide Treg cells, not from FoxP3-expressing activated non-Treg CD4+T cells. In analysis of immunophenotypes, TNF-α+ Treg cells were enriched in CD45RA-FoxP3lo population, implying their reduced in vivo suppressive activity. Along with the lower level of FoxP3, TNF-α+ Treg cells showed lower level of CD39 expression, a surrogate marker of Treg cell suppressive activity, compared to TNF-α- Treg cells. Furthermore, TNF-α+Treg cells showed a robust evidence of lineage-plasticity toward Th17 lineage, expressing a key transcription factor RORγt. Consistently, they expressed CCR6 and co-produced IL-17A following TCR stimulation, which are the hallmark of Th17 effector function. To analyze the clinical implication of attenuate suppressive function and plasticity shown by TNF-α+ Treg cells, we examined correlation between production of proinflammatory cytokines from Treg cells and severity of liver damage in AHA. As a result, proportion of TNF-α-producing Treg cells closely and linearly correlated with severity of liver damage, suggesting the critical role of TNF-α+ Treg cells in the immunopathogenesis of AHA. However, Treg cell suppression assay in the absence or presence of anti-TNF-α antibody showed that Treg cell suppressive function was not affected by TNF-α blockade. This indicates that attenuated function of TNF-α+Treg cells is not attributed simply to production of a kind of inflammatory cytokine, rather to more complicated reprogramming mechanism. Taken together, these data provide a clear evidence of attenuated suppressive activity and Th17-toward lineage plasticity of FoxP3+ Treg cells, represented by TNF-α production, in a human acute viral infection. Also, we suggest one possible mechanism that lineage plasticity and inflammatory changes of Treg cells could be implicated in the immunopathogenesis of human diseases. Disclosures No relevant conflicts of interest to declare.


2012 ◽  
Vol 302 (10) ◽  
pp. L1078-L1087 ◽  
Author(s):  
Bradley W. Buczynski ◽  
Min Yee ◽  
B. Paige Lawrence ◽  
Michael A. O'Reilly

Oxygen exposure in preterm infants has been associated with altered lung development and increased risk for respiratory viral infections later in life. Although the dose of oxygen sufficient to exert these changes in humans remains unknown, adult mice exposed to 100% oxygen between postnatal days 1– 4 exhibit alveolar simplification and increased sensitivity to influenza virus infection. Additionally, two nonlinear thresholds of neonatal oxygen exposures were previously identified that promote modest (between 40% and 60% oxygen) and severe (between 80% and 100% oxygen) changes in lung development. Here, we investigate whether these two thresholds correlate with the severity of lung disease following respiratory viral infection. Adult mice exposed to 100% oxygen at birth, and to a lesser extent 80% oxygen, demonstrated enhanced body weight loss, persistent inflammation, and fibrosis following infection compared with infected siblings exposed to room air at birth. In contrast, the host response to infection was indistinguishable between mice exposed to room air and 40% or 60% oxygen. Interestingly, levels of monocyte chemoattractant protein (MCP)-1 were equivalently elevated in infected mice that had been exposed to 80% or 100% oxygen as neonates. However, reducing levels of MCP-1 using heterozygous Mcp-1 mice did not affect oxygen-dependent changes in the response to infection. Thus lung development and the host response to respiratory viral infection are disrupted by different doses of oxygen. Our findings suggest that measuring lung function alone may not be sufficient to identify individuals born prematurely who have increased risk for respiratory viral infection.


2016 ◽  
Vol 197 (10) ◽  
pp. 3936-3949 ◽  
Author(s):  
Bianca L. Bautista ◽  
Priyadharshini Devarajan ◽  
K. Kai McKinstry ◽  
Tara M. Strutt ◽  
Allen M. Vong ◽  
...  

2019 ◽  
Vol 9 (3-4) ◽  
pp. 485-494
Author(s):  
L. M. Tsybalova ◽  
L. A. Stepanova ◽  
A. V. Korotkov ◽  
M. A. Shuklina ◽  
M. V. Zaitseva ◽  
...  

Generating cross-reactive vaccines aimed at targeting all human influenza A virus subtypes is among high priority tasks in contemporary vaccinology. Such vaccines will be primarily demanded during pre-pandemic period as well as used to prime some population cohorts prior to vaccination with standard vaccines containing area-relevant epidemic virus. Unlike routine approach universal vaccines do not induce a sterilizing immunity, but significantly ameliorate overt infection and probable complications. Our study was aimed at evaluating characteristics of immune response in experimental animals primed with a candidate universal vaccine challenged with sublethal influenza A virus infection. Mice were immunized intranasally with the recombinant protein FlgH2-2-4M2e containing conservative peptides derived from two influenza A virus proteins: M2 protein ectodomain and 76–130 amino acid sequence from the second hemagglutinin (HA2) subunit genetically linked to bacterial flagellin protein, which is a ligand for Toll-like receptor 5 (TLR5). Control mice received saline. Two weeks after immunization, mice from both groups were infected with a sublethal dose of A/Aichi/2/68 AN3N2 influenza virus strain. Level of immunoglobulins G and A in the blood sera and bronchoalveolar lavages (BAL) were determined two weeks after immunization and 1 month post infection. Percentage of lung CD4+ T and CD4+ Tem (CD44+CD62L–) cells secreting cytokines TNFα, IFNγ, IL-2 was determined. Immunized vs. control mice responded to sublethal infection with the influenza virus by insignificant weight loss and more pronounced production of vaccine peptide-specific (M2e and aa76–130 HA2) and pan-influenza A/Aichi/2/68 virus IgG and A in the blood sera and BAL. After challenge the number of CD4+ T cells secreting cytokines TNFα and/or IL-2 in immunized mice significantly exceeded counterpart T cells in unimmunized animals that was true for both CD4+T and CD4+ Tem cells. Memory CD4+ T cells were previously shown to play a key role in the prime-boost event and heterosubtypic immune response. Thus, we were able to demonstrate a priming effect for recombinant cross-protective vaccine used in our experiment.


2020 ◽  
Vol 4 (11) ◽  
pp. 701-712
Author(s):  
Nathália V. Batista ◽  
Yu-Han Chang ◽  
Kuan-Lun Chu ◽  
Kuan Chung Wang ◽  
Mélanie Girard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document