scholarly journals Chronic high glyphosate exposure delays individual worker bee (Apis mellifera L.) development under field conditions

2020 ◽  
Author(s):  
Richard Odemer ◽  
Abdulrahim T. Alkassab ◽  
Gabriela Bischoff ◽  
Malte Frommberger ◽  
Anna Wernecke ◽  
...  

ABSTRACTThe ongoing debate about glyphosate-based herbicides (GBH) and their implications for beneficial arthropods give rise to controversy. This research was carried out to cover possible sublethal GBH effects on brood and colony development, adult survival, and overwintering success of honey bees (Apis mellifera L.) under field conditions. Residues in bee relevant matrices such as nectar, pollen and plants were measured in addition. To address these questions, we adopted four independent study approaches. For brood effects and survival, we orally exposed mini-hives housed in the “Kieler mating-nuc” system to sublethal concentrations of 4.8 mg glyphosate/kg (T1, low) and 137.6 mg glyphosate/kg (T2, high) over the period of one brood cycle (21 days). Brood development and colony conditions were assessed after a modified OECD method (No. 75). For adult survival, we weighed and labeled freshly emerged workers from exposed colonies and introduced them into non-contaminated mini-hives to monitor life span for 25 consecutive days. Results from these experiments showed a trivial effect of GBH on colony conditions and survival of individual workers, even though hatching weight was reduced in T2. The brood termination rate (BTR) in the T2 treatment, however, was more than doubled (49.84%) when compared to the control (22.11%) or T1 (20.69%). This was surprising as T2 colonies gained similar weight and similar numbers of bees per colony compared to the control, indicating equal performance. Obviously, the brood development in T2 was not “terminated” as expected by the OECD method terminology but rather “slowed down” for an unknown period of time. In light of these findings, we suggest that chronic high GBH exposure is capable of delaying worker brood development to a significant extent while no further detrimental effects seem to appear at the colony level. Against this background, we discuss additional results and possible consequences of GBH for honey bee health.

Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 664
Author(s):  
Richard Odemer ◽  
Abdulrahim T. Alkassab ◽  
Gabriela Bischoff ◽  
Malte Frommberger ◽  
Anna Wernecke ◽  
...  

The ongoing debate about glyphosate-based herbicides (GBH) and their implications for beneficial arthropods gives rise to controversy. This research was carried out to cover possible sublethal GBH effects on the brood and colony development, adult survival, and overwintering success of honey bees (Apis mellifera L.) under field conditions. Residues in bee relevant matrices, such as nectar, pollen, and plants, were additionally measured. To address these questions, we adopted four independent study approaches. For brood effects and survival, we orally exposed mini-hives housed in the “Kieler mating-nuc” system to sublethal concentrations of 4.8 mg glyphosate/kg (T1, low) and 137.6 mg glyphosate/kg (T2, high) over a period of one brood cycle (21 days). Brood development and colony conditions were assessed after a modified OECD method (No. 75). For adult survival, we weighed and labeled freshly emerged workers from control and exposed colonies and introduced them into non-contaminated mini-hives to monitor their life span for 25 consecutive days. The results from these experiments showed a trivial effect of GBH on colony conditions and the survival of individual workers, even though the hatching weight was reduced in T2. The brood termination rate (BTR) in the T2 treatment, however, was more than doubled (49.84%) when compared to the control (22.11%) or T1 (20.69%). This was surprising as T2 colonies gained similar weight and similar numbers of bees per colony compared to the control, indicating an equal performance. Obviously, the brood development in T2 was not “terminated” as expected by the OECD method terminology, but rather “slowed down” for an unknown period of time. In light of these findings, we suggest that chronic high GBH exposure is capable of significantly delaying worker brood development, while no further detrimental effects seem to appear at the colony level. Against this background, we discuss additional results and possible consequences of GBH for honey bee health.


2019 ◽  
Vol 56 (4) ◽  
pp. 636-641 ◽  
Author(s):  
Roman V. Koziy ◽  
Sarah C. Wood ◽  
Ivanna V. Kozii ◽  
Claire Janse van Rensburg ◽  
Igor Moshynskyy ◽  
...  

Deformed wing virus (DWV) is a single-stranded RNA virus of honey bees ( Apis mellifera L.) transmitted by the parasitic mite Varroa destructor. Although DWV represents a major threat to honey bee health worldwide, the pathological basis of DWV infection is not well documented. The objective of this study was to investigate clinicopathological and histological aspects of natural DWV infection in honey bee workers. Emergence of worker honey bees was observed in 5 colonies that were clinically affected with DWV and the newly emerged bees were collected for histopathology. DWV-affected bees were 2 times slower to emerge and had 30% higher mortality compared to clinically normal bees. Hypopharyngeal glands in bees with DWV were hypoplastic, with fewer intracytoplasmic secretory vesicles; cells affected by apoptosis were observed more frequently. Mandibular glands were hypoplastic and were lined by cuboidal epithelium in severely affected bees compared to tall columnar epithelium in nonaffected bees. The DWV load was on average 1.7 × 106 times higher ( P < .001) in the severely affected workers compared to aged-matched sister honey bee workers that were not affected by deformed wing disease based on gross examination. Thus, DWV infection is associated with prolonged emergence, increased mortality during emergence, and hypoplasia of hypopharyngeal and mandibular glands in newly emerged worker honey bees in addition to previously reported deformed wing abnormalities.


2018 ◽  
Author(s):  
Tim Regan ◽  
Mark W. Barnett ◽  
Dominik R. Laetsch ◽  
Stephen J. Bush ◽  
David Wragg ◽  
...  

AbstractThe European honey bee (Apis mellifera) plays a major role in pollination and food production, but is under threat from emerging pathogens and agro-environmental insults. As with other organisms, honey bee health is a complex product of environment, host genetics and associated microbes (commensal, opportunistic and pathogenic). Improved understanding of bee genetics and their molecular ecology can help manage modern challenges to bee health and production. Sampling bee and cobiont genomes, we characterised the metagenome of 19 honey bee colonies across Britain. Low heterozygosity was observed in bees from many Scottish colonies, sharing high similarity to the native dark bee, A. mellifera mellifera. Apiaries exhibited high diversity in the composition and relative abundance of individual microbiome taxa. Most non-bee sequences derived from known honey bee commensal bacteria or known pathogens, e.g. Lotmaria passim (Trypanosomatidae), and Nosema spp. (Microsporidia). However, DNA was also detected from numerous additional bacterial, plant (food source), protozoan and metazoan organisms. To classify sequences from cobionts lacking genomic information, we developed a novel network analysis approach clustering orphan contigs, allowing the identification of a pathogenic gregarine. Our analyses demonstrate the power of high-throughput, directed metagenomics in agroecosystems identifying potential threats to honey bees present in their microbiota.


2009 ◽  
Vol 102 (1) ◽  
pp. 20-29 ◽  
Author(s):  
R. Everich ◽  
C. Schiller ◽  
J. Whitehead ◽  
M. Beavers ◽  
K. Barrett

Author(s):  
Marla Spivak ◽  
Robert G. Danka

AbstractHygienic behavior in honey bees, Apis mellifera, has been studied for over 80 years with the aim of understanding mechanisms of pathogen and parasite resistance and colony health. This review emphasizes the underlying behavioral mechanisms of hygienic behavior in honey bees and when known, in other social insects. We explore the relationship between honey bee hygienic behavior toward diseased brood and Varroa-parasitized brood (Varroa-sensitive hygiene, VSH); the timing of hygienic removal of diseased, Varroa-infested, and virus-infected brood relative to risk of transmission that can affect colony fitness; and the methods, utility, and odorants associated with different assays used to select colonies for resistance to diseases and Varroa. We also provide avenues for future research that would benefit honey bee health and survivorship.


Bee World ◽  
2020 ◽  
pp. 1-5
Author(s):  
Humberto Boncristiani ◽  
James D. Ellis ◽  
Tomas Bustamante ◽  
Jason Graham ◽  
Cameron Jack ◽  
...  

2018 ◽  
Vol 16 (2) ◽  
pp. e0502 ◽  
Author(s):  
Maria Buendía ◽  
Raquel Martín-Hernández ◽  
Concepción Ornosa ◽  
Laura Barrios ◽  
Carolina Bartolomé ◽  
...  

As a part of a Pilot Monitoring Program of honey bee health coordinated by the EURL (European Union Reference Laboratory) and according to the criteria established for Spain, 14 apiaries in Castilla-La Mancha were selected at random and sampled during the autumns of 2012-2014 to identify the most prevalent nosogenic agents, potentially those related to the honey bee colony collapse phenomenon. In all the apiaries studied, Nosema ceranae was the most prevalent pathogen detected over the three years, confirming the worldwide spread of this microsporidian, a pathogen that negatively affects honey bee health at an individual and colony level. Trypanosomatids were also very prevalent in honey bee colonies, although the majority of Trypanosomatids detected were not Crithidia mellificae but rather the genetically distinct Lotmaria passim lineage. We also detected Varroa destructor mites, and the particularly high prevalence in 2014 suggests a possible problem regarding mite control in field conditions that requires attention. In agreement with data from other regions, the BQCV and DWV were the most prevalent viruses in honey bee colonies and thus, the Varroa-DVW interaction may be an important cause of bee colony mortality. While there was little evidence of a relationship between the BQCV virus and N. ceranae under field conditions during 2012, this was not the case in 2013 and 2014. Finally, the AKI-complex or LSV-complex was not detected. The information obtained in this study should help orientate future plans for honey bee disease control.


Sign in / Sign up

Export Citation Format

Share Document