scholarly journals A Classification Approach for Predicting COVID-19 Patient Survival Outcome with Machine Learning Techniques

Author(s):  
Abdulhameed Ado Osi ◽  
Hussaini Garba Dikko ◽  
Mannir Abdu ◽  
Auwalu Ibrahim ◽  
Lawan Adamu Isma'il ◽  
...  

COVID-19 is an infectious disease discovered after the outbreak began in Wuhan, China, in December 2019. COVID-19 is still becoming an increasing global threat to public health. The virus has been escalated to many countries across the globe. This paper analyzed and compared the performance of three different supervised machine learning techniques; Linear Discriminant Analysis (LDA), Random Forest (RF), and Support Vector Machine (SVM) on COVID-19 dataset. The best level of accuracy between these three algorithms was determined by comparison of some metrics for assessing predictive performance such as accuracy, sensitivity, specificity, F-score, Kappa index, and ROC. From the analysis results, RF was found to be the best algorithm with 100% prediction accuracy in comparison with LDA and SVM with 95.2% and 90.9% respectively. Our analysis shows that out of these three classification models RF predicts COVID-19 patient's survival outcome with the highest accuracy. Chi-square test reveals that all the seven features except sex were significantly correlated with the COVID-19 patient's outcome (P-value < 0.005). Therefore, RF was recommended for COVID-19 patient outcome prediction that will help in early identification of possible sensitive cases for quick provision of quality health care, support and supervision.

2017 ◽  
Vol 4 (1) ◽  
pp. 56-74 ◽  
Author(s):  
Abinash Tripathy ◽  
Santanu Kumar Rath

Sentiment analysis helps to determine hidden intention of the concerned author of any topic and provides an evaluation report on the polarity of any document. The polarity may be positive, negative or neutral. It is observed that very often the data associated with the sentiment analysis consist of the feedback given by various specialists on any topic or product. Thus, the review may be categorized properly into any sort of class based on the polarity, in order to have a good knowledge about the product. This article proposes an approach to classify the review dataset made on basis of sentiment analysis into different polarity groups. Four machine learning algorithms viz., Naive Bayes (NB), Support Vector Machine (SVM), Random Forest, and Linear Discriminant Analysis (LDA) have been considered in this paper for classification process. The obtained result on values of accuracy of the algorithms are critically examined by using different performance parameters, applied on two different datasets.


2020 ◽  
pp. 143-163
Author(s):  
Abinash Tripathy ◽  
Santanu Kumar Rath

Sentiment analysis helps to determine hidden intention of the concerned author of any topic and provides an evaluation report on the polarity of any document. The polarity may be positive, negative or neutral. It is observed that very often the data associated with the sentiment analysis consist of the feedback given by various specialists on any topic or product. Thus, the review may be categorized properly into any sort of class based on the polarity, in order to have a good knowledge about the product. This article proposes an approach to classify the review dataset made on basis of sentiment analysis into different polarity groups. Four machine learning algorithms viz., Naive Bayes (NB), Support Vector Machine (SVM), Random Forest, and Linear Discriminant Analysis (LDA) have been considered in this paper for classification process. The obtained result on values of accuracy of the algorithms are critically examined by using different performance parameters, applied on two different datasets.


Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


2021 ◽  
Vol 297 ◽  
pp. 01073
Author(s):  
Sabyasachi Pramanik ◽  
K. Martin Sagayam ◽  
Om Prakash Jena

Cancer has been described as a diverse illness with several distinct subtypes that may occur simultaneously. As a result, early detection and forecast of cancer types have graced essentially in cancer fact-finding methods since they may help to improve the clinical treatment of cancer survivors. The significance of categorizing cancer suffers into higher or lower-threat categories has prompted numerous fact-finding associates from the bioscience and genomics field to investigate the utilization of machine learning (ML) algorithms in cancer diagnosis and treatment. Because of this, these methods have been used with the goal of simulating the development and treatment of malignant diseases in humans. Furthermore, the capacity of machine learning techniques to identify important characteristics from complicated datasets demonstrates the significance of these technologies. These technologies include Bayesian networks and artificial neural networks, along with a number of other approaches. Decision Trees and Support Vector Machines which have already been extensively used in cancer research for the creation of predictive models, also lead to accurate decision making. The application of machine learning techniques may undoubtedly enhance our knowledge of cancer development; nevertheless, a sufficient degree of validation is required before these approaches can be considered for use in daily clinical practice. An overview of current machine learning approaches utilized in the simulation of cancer development is presented in this paper. All of the supervised machine learning approaches described here, along with a variety of input characteristics and data samples, are used to build the prediction models. In light of the increasing trend towards the use of machine learning methods in biomedical research, we offer the most current papers that have used these approaches to predict risk of cancer or patient outcomes in order to better understand cancer.


Proceedings ◽  
2020 ◽  
Vol 54 (1) ◽  
pp. 53
Author(s):  
Francisco Laport ◽  
Paula M. Castro ◽  
Adriana Dapena ◽  
Francisco J. Vazquez-Araujo ◽  
Daniel Iglesia

A comparison of different machine learning techniques for eye state identification through Electroencephalography (EEG) signals is presented in this paper. (1) Background: We extend our previous work by studying several techniques for the extraction of the features corresponding to the mental states of open and closed eyes and their subsequent classification; (2) Methods: A prototype developed by the authors is used to capture the brain signals. We consider the Discrete Fourier Transform (DFT) and the Discrete Wavelet Transform (DWT) for feature extraction; Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) for state classification; and Independent Component Analysis (ICA) for preprocessing the data; (3) Results: The results obtained from some subjects show the good performance of the proposed methods; and (4) Conclusion: The combination of several techniques allows us to obtain a high accuracy of eye identification.


The advancement in cyber-attack technologies have ushered in various new attacks which are difficult to detect using traditional intrusion detection systems (IDS).Existing IDS are trained to detect known patterns because of which newer attacks bypass the current IDS and go undetected. In this paper, a two level framework is proposed which can be used to detect unknown new attacks using machine learning techniques. In the first level the known types of classes for attacks are determined using supervised machine learning algorithms such as Support Vector Machine (SVM) and Neural networks (NN). The second level uses unsupervised machine learning algorithms such as K-means. The experimentation is carried out with four models with NSL- KDD dataset in Openstack cloud environment. The Model with Support Vector Machine for supervised machine learning, Gradual Feature Reduction (GFR) for feature selection and K-means for unsupervised algorithm provided the optimum efficiency of 94.56 %.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 403
Author(s):  
Muhammad Waleed ◽  
Tai-Won Um ◽  
Tariq Kamal ◽  
Syed Muhammad Usman

In this paper, we apply the multi-class supervised machine learning techniques for classifying the agriculture farm machinery. The classification of farm machinery is important when performing the automatic authentication of field activity in a remote setup. In the absence of a sound machine recognition system, there is every possibility of a fraudulent activity taking place. To address this need, we classify the machinery using five machine learning techniques—K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF) and Gradient Boosting (GB). For training of the model, we use the vibration and tilt of machinery. The vibration and tilt of machinery are recorded using the accelerometer and gyroscope sensors, respectively. The machinery included the leveler, rotavator and cultivator. The preliminary analysis on the collected data revealed that the farm machinery (when in operation) showed big variations in vibration and tilt, but observed similar means. Additionally, the accuracies of vibration-based and tilt-based classifications of farm machinery show good accuracy when used alone (with vibration showing slightly better numbers than the tilt). However, the accuracies improve further when both (the tilt and vibration) are used together. Furthermore, all five machine learning algorithms used for classification have an accuracy of more than 82%, but random forest was the best performing. The gradient boosting and random forest show slight over-fitting (about 9%), but both algorithms produce high testing accuracy. In terms of execution time, the decision tree takes the least time to train, while the gradient boosting takes the most time.


P300 speller in Brain Computer Interface (BCI) allows locked-in or completely paralyzed patients to communicate with humans. To achieve the performance of characterization and increase accuracy, machine learning techniques are used. The study is about an event related potential (ERP) P300 signal detection and classification using various machine learning algorithms. Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) are used to classify P300 and Non-P300 signal from Electroencephalography (EEG) signal. The performance of the system is evaluated based on f1-score using BCI competition III dataset II. In our system, we used LDA and SVM classification algorithms. Both the classifiers gave 91.0% classification accuracy.


2020 ◽  
Vol 17 (3) ◽  
pp. 360-383 ◽  
Author(s):  
Anantha Narayanan ◽  
Farzanah Desai ◽  
Tom Stewart ◽  
Scott Duncan ◽  
Lisa Mackay

Background: Application of machine learning for classifying human behavior is increasingly common as access to raw accelerometer data improves. The aims of this scoping review are (1) to examine if machine-learning techniques can accurately identify human activity behaviors from raw accelerometer data and (2) to summarize the practical implications of these machine-learning techniques for future work. Methods: Keyword searches were performed in Scopus, Web of Science, and EBSCO databases in 2018. Studies that applied supervised machine-learning techniques to raw accelerometer data and estimated components of physical activity were included. Information on study characteristics, machine-learning techniques, and key study findings were extracted from included studies. Results: Of the 53 studies included in the review, 75% were published in the last 5 years. Most studies predicted postures and activity type, rather than intensity, and were conducted in controlled environments using 1 or 2 devices. The most common models were support vector machine, random forest, and artificial neural network. Overall, classification accuracy ranged from 62% to 99.8%, although nearly 80% of studies achieved an overall accuracy above 85%. Conclusions: Machine-learning algorithms demonstrate good accuracy when predicting physical activity components; however, their application to free-living settings is currently uncertain.


2020 ◽  
Vol 17 (9) ◽  
pp. 4219-4222
Author(s):  
ManjulaSri Rayudu ◽  
Srujana Pendam ◽  
Srilaxmi Dasari

All the patients of Type1 and more than 60% of Type2 Diabetes suffer from Diabetic Retinopathy (DR). Diabetic retinopathy causes damage to retina of eye and slowly leads to complete vision loss. The longer the patients are suffering from diabetes the probability of presence of DR is more. Hence diabetic retinopathy is to be identified in early stage to avoid blindness. The objective of this research work is to predict the severity of diabetic retinopathy (Non Proliferated) using machine learning techniques. Proliferated diabetic retinopathy (later stage) is characterized by neovasculature in the retinal veins and is the final stage. Non proliferated DR (earlier stage) is identified by any of the abnormalities out of microaneurysms, Hard exudates and hemorrhages. Then Machine learning techniques are employed to identify the class of DR. The following Classification and regression techniques are employed for categorizing the DR: Gini Diversity Index method, Linear discriminant analysis, Ensemble method with bagged and boosted trees, K-Nearest Neighbor, and Support Vector Machine classification methods. 89 images from DRIVE database (DiaRet DB1) are classified using the machine learning techniques cited above. It is observed the maximum accuracy is achieved as 88.8% with Linear SVM classifier.


Sign in / Sign up

Export Citation Format

Share Document