scholarly journals Besca, a single-cell transcriptomics analysis toolkit to accelerate translational research

2020 ◽  
Author(s):  
Sophia Clara Mädler ◽  
Alice Julien-Laferriere ◽  
Luis Wyss ◽  
Miroslav Phan ◽  
Albert S. W. Kang ◽  
...  

AbstractSingle-cell RNA sequencing (scRNA-seq) revolutionised our understanding of disease biology and presented the promise of transforming translational research. We developed Besca, a toolkit that streamlines scRNA-seq analyses according to current best practices. A standard workflow covers quality control, filtering, and clustering. Two complementary Besca modules, utilizing hierarchical cell signatures or supervised machine learning, automate cell annotation and provide harmonised nomenclatures across studies. Subsequently, Besca enables estimation of cell type proportions in bulk transcriptomics studies. Using multiple heterogeneous scRNA-seq datasets we show how Besca aids acceleration, interoperability, reusability, and interpretability of scRNA-seq data analysis, crucial aspects in translational research and beyond.

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Sophia Clara Mädler ◽  
Alice Julien-Laferriere ◽  
Luis Wyss ◽  
Miroslav Phan ◽  
Anthony Sonrel ◽  
...  

Abstract Single-cell RNA sequencing (scRNA-seq) revolutionized our understanding of disease biology. The promise it presents to also transform translational research requires highly standardized and robust software workflows. Here, we present the toolkit Besca, which streamlines scRNA-seq analyses and their use to deconvolute bulk RNA-seq data according to current best practices. Beyond a standard workflow covering quality control, filtering, and clustering, two complementary Besca modules, utilizing hierarchical cell signatures and supervised machine learning, automate cell annotation and provide harmonized nomenclatures. Subsequently, the gene expression profiles can be employed to estimate cell type proportions in bulk transcriptomics data. Using multiple, diverse scRNA-seq datasets, some stemming from highly heterogeneous tumor tissue, we show how Besca aids acceleration, interoperability, reusability and interpretability of scRNA-seq data analyses, meeting crucial demands in translational research and beyond.


2021 ◽  
Author(s):  
Xiaowen Cao ◽  
Li Xing ◽  
Elham Majd ◽  
Hua He ◽  
Junhua Gu ◽  
...  

Abstract Background: Single-cell RNA sequencing (scRNA-seq) yields valuable insights about gene expression and gives critical information about complex tissue cellular composition. In the analysis of single-cell RNA sequencing, the annotations of cell subtypes are often done manually, which is time-consuming and irreproducible. Garnett is a cell-type annotation software based the on elastic net method. Beside cell-type annotation, supervised machine learning methods can also be applied to predict other cell phenotypes from genomic data. Despite the popularity of such applications, there is no existing study to systematically investigate the performance of those supervised algorithms in various sizes of scRNA-seq data sets. Methods and Results: This study evaluates 13 popular supervised machine learning algorithms to classify cell phenotypes, using published real and simulated data sets with diverse cell sizes. The benchmark contained two parts. In the first part, we used real data sets to assess the popular supervised algorithms’ computing speed and cell phenotype classification performance. The classification performances were evaluated using AUC statistics, F1-score, precision, recall, and false-positive rate. In the second part, we evaluated gene selection performance using published simulated data sets with a known list of real genes. Conclusion: The study outcomes showed that ElasticNet with interactions performed best in small and medium data sets. NB was another appropriate method for medium data sets. In large data sets, XGB works excellent. Ensemble algorithms were not significantly superior to individual machine learning methods. Adding interactions to ElasticNet can help, and the improvement was significant in small data sets.


Author(s):  
Zilong Zhang ◽  
Feifei Cui ◽  
Chen Lin ◽  
Lingling Zhao ◽  
Chunyu Wang ◽  
...  

Abstract Single-cell RNA sequencing (scRNA-seq) has enabled us to study biological questions at the single-cell level. Currently, many analysis tools are available to better utilize these relatively noisy data. In this review, we summarize the most widely used methods for critical downstream analysis steps (i.e. clustering, trajectory inference, cell-type annotation and integrating datasets). The advantages and limitations are comprehensively discussed, and we provide suggestions for choosing proper methods in different situations. We hope this paper will be useful for scRNA-seq data analysts and bioinformatics tool developers.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205883 ◽  
Author(s):  
Joseph C. Mays ◽  
Michael C. Kelly ◽  
Steven L. Coon ◽  
Lynne Holtzclaw ◽  
Martin F. Rath ◽  
...  

2021 ◽  
Author(s):  
Mariia Bilous ◽  
Loc Tran ◽  
Chiara Cianciaruso ◽  
Santiago J Carmona ◽  
Mikael J Pittet ◽  
...  

Single-cell RNA sequencing (scRNA-seq) technologies offer unique opportunities for exploring heterogeneous cell populations. However, in-depth single-cell transcriptomic characterization of complex tissues often requires profiling tens to hundreds of thousands of cells. Such large numbers of cells represent an important hurdle for downstream analyses, interpretation and visualization. Here we develop a network-based coarse-graining framework where highly similar cells are merged into super-cells. We demonstrate that super-cells not only preserve but often improve the results of downstream analyses including visualization, clustering, differential expression, cell type annotation, gene correlation, imputation, RNA velocity and data integration. By capitalizing on the redundancy inherent to scRNA-seq data, super-cells significantly facilitate and accelerate the construction and interpretation of single-cell atlases, as demonstrated by the integration of 1.46 million cells from COVID-19 patients in less than two hours on a standard desktop.


2021 ◽  
Author(s):  
Yun Zhang ◽  
Brian Aevermann ◽  
Rohan Gala ◽  
Richard H. Scheuermann

Reference cell type atlases powered by single cell transcriptomic profiling technologies have become available to study cellular diversity at a granular level. We present FR-Match for matching query datasets to reference atlases with robust and accurate performance for identifying novel cell types and non-optimally clustered cell types in the query data. This approach shows excellent performance for cross-platform, cross-sample type, cross-tissue region, and cross-data modality cell type matching.


2020 ◽  
Author(s):  
Etienne Becht ◽  
Daniel Tolstrup ◽  
Charles-Antoine Dutertre ◽  
Florent Ginhoux ◽  
Evan W. Newell ◽  
...  

AbstractModern immunologic research increasingly requires high-dimensional analyses in order to understand the complex milieu of cell-types that comprise the tissue microenvironments of disease. To achieve this, we developed Infinity Flow combining hundreds of overlapping flow cytometry panels using machine learning to enable the simultaneous analysis of the co-expression patterns of 100s of surface-expressed proteins across millions of individual cells. In this study, we demonstrate that this approach allows the comprehensive analysis of the cellular constituency of the steady-state murine lung and to identify novel cellular heterogeneity in the lungs of melanoma metastasis bearing mice. We show that by using supervised machine learning, Infinity Flow enhances the accuracy and depth of clustering or dimensionality reduction algorithms. Infinity Flow is a highly scalable, low-cost and accessible solution to single cell proteomics in complex tissues.


Sign in / Sign up

Export Citation Format

Share Document