scholarly journals Attenuated influenza virions expressing the SARS-CoV-2 receptor-binding domain induce neutralizing antibodies in mice

2020 ◽  
Author(s):  
Andrea N. Loes ◽  
Lauren E. Gentles ◽  
Allison J. Greaney ◽  
Katharine H. D. Crawford ◽  
Jesse D. Bloom

AbstractAn effective vaccine is essential to controlling the spread of SARS-CoV-2 virus. Here, we describe an influenza-virus-based vaccine for SARS-CoV-2. We incorporated a membrane-anchored form of the SARS-CoV-2 Spike receptor binding domain (RBD) in place of the neuraminidase (NA) coding sequence in an influenza virus also possessing a mutation that reduces the affinity of hemagglutinin for its sialic acid receptor. The resulting ΔNA(RBD)-Flu virus can be generated by reverse genetics and grown to high titers in cell culture. A single-dose intranasal inoculation of mice with ΔNA(RBD)-Flu elicits serum neutralizing antibody titers against SAR-CoV-2 comparable to those observed in humans following natural infection (∼1:200). Furthermore, ΔNA(RBD)-Flu itself causes no apparent disease in mice. It might be possible to produce a vaccine similar to ΔNA(RBD)-Flu at scale by leveraging existing platforms for production of influenza vaccines.

Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 987 ◽  
Author(s):  
Andrea N. Loes ◽  
Lauren E. Gentles ◽  
Allison J. Greaney ◽  
Katharine H. D. Crawford ◽  
Jesse D. Bloom

An effective vaccine is essential for controlling the spread of the SARS-CoV-2 virus. Here, we describe an influenza virus-based vaccine for SARS-CoV-2. We incorporated a membrane-anchored form of the SARS-CoV-2 spike receptor binding domain (RBD) in place of the neuraminidase (NA) coding sequence in an influenza virus also possessing a mutation that reduces the affinity of hemagglutinin for its sialic acid receptor. The resulting ΔNA(RBD)-Flu virus can be generated by reverse genetics and grown to high titers in cell culture. A single-dose intranasal inoculation of mice with ΔNA(RBD)-Flu elicits serum neutralizing antibody titers against SAR-CoV-2 comparable to those observed in humans following natural infection (~1:200). Furthermore, ΔNA(RBD)-Flu itself causes no apparent disease in mice. It might be possible to produce a vaccine similar to ΔNA(RBD)-Flu at scale by leveraging existing platforms for the production of influenza vaccines.


Author(s):  
Tara L. Steffen ◽  
E. Taylor Stone ◽  
Mariah Hassert ◽  
Elizabeth Geerling ◽  
Brian T. Grimberg ◽  
...  

AbstractNatural infection of SARS-CoV-2 in humans leads to the development of a strong neutralizing antibody response, however the immunodominant targets of the polyclonal neutralizing antibody response are still unknown. Here, we functionally define the role SARS-CoV-2 spike plays as a target of the human neutralizing antibody response. In this study, we identify the spike protein subunits that contain antigenic determinants and examine the neutralization capacity of polyclonal sera from a cohort of patients that tested qRT-PCR-positive for SARS-CoV-2. Using an ELISA format, we assessed binding of human sera to spike subunit 1 (S1), spike subunit 2 (S2) and the receptor binding domain (RBD) of spike. To functionally identify the key target of neutralizing antibody, we depleted sera of subunit-specific antibodies to determine the contribution of these individual subunits to the antigen-specific neutralizing antibody response. We show that epitopes within RBD are the target of a majority of the neutralizing antibodies in the human polyclonal antibody response. These data provide critical information for vaccine development and development of sensitive and specific serological testing.


2020 ◽  
Author(s):  
Emmanuelle Billon-Denis ◽  
Audrey Ferrier-Rembert ◽  
Annabelle Garnier ◽  
Laurence Cheutin ◽  
Clarisse Vigne ◽  
...  

Abstract BackgroundWe report here the case of two coworkers infected by the same SARS-CoV-2 strain, presenting two different immunological outcomes. CaseOne patient presented a strong IgG anti-receptor-binding domain immune response correlated with a low and rapidly decreasing titer of neutralizing antibodies. The other patient had similar strong IgG anti-receptor-binding domain immune response but high neutralizing antibody titers. Discussion and ConclusionThus, host individual factors may be the main drivers of the immune response varying with age and clinical severity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Vikram Srivastava ◽  
Ling Niu ◽  
Kruttika S. Phadke ◽  
Bryan H. Bellaire ◽  
Michael W. Cho

A novel betacoronavirus (SARS-CoV-2) that causes severe pneumonia emerged through zoonosis in late 2019. The disease, referred to as COVID-19, has an alarming mortality rate and it is having a devastating effect on the global economy and public health systems. A safe, effective vaccine is urgently needed to halt this pandemic. In this study, immunogenicity of the receptor binding domain (RBD) of spike (S) glycoprotein was examined in mice. Animals were immunized with recombinant RBD antigen intraperitoneally using three different adjuvants (Zn-chitosan, Alhydrogel, and Adju-Phos), and antibody responses were followed for over 5 months. Results showed that potent neutralizing antibodies (nAbs) can be induced with 70% neutralization titer (NT70) of ~14,580 against live, infectious viruses. Although antigen-binding antibody titers decreased gradually over time, sufficiently protective levels of nAbs persisted (NT80 >2,430) over the 5-month observation period. Results also showed that adjuvants have profound effects on kinetics of nAb induction, total antibody titers, antibody avidity, antibody longevity, and B-cell epitopes targeted by the immune system. In conclusion, a recombinant subunit protein immunogen based on the RBD is a highly promising vaccine candidate. Continued evaluation of RBD immunogenicity using different adjuvants and vaccine regimens could further improve vaccine efficacy.


Vaccines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1383
Author(s):  
Juan Shi ◽  
Xiaoxiao Jin ◽  
Yan Ding ◽  
Xiaotao Liu ◽  
Anran Shen ◽  
...  

Multiple variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have spread around the world, but the neutralizing effects of antibodies induced by the existing vaccines have declined, which highlights the importance of developing vaccines against mutant virus strains. In this study, nine receptor-binding domain (RBD) proteins of the SARS-CoV-2 variants (B.1.1.7, B.1.351 and P.1 lineages) were constructed and fused with the Fc fragment of human IgG (RBD-Fc). These RBD-Fc proteins contained single or multiple amino acid substitutions at prevalent mutation points of spike protein, which enabled them to bind strongly to the polyclonal antibodies specific for wild-type RBD and to the recombinant human ACE2 protein. In the BALB/c, mice were immunized with the wild-type RBD-Fc protein first and boosted twice with the indicated mutant RBD-Fc proteins later. All mutant RBD-Fc proteins elicited high-level IgG antibodies and cross-neutralizing antibodies. The RBD-Fc proteins with multiple substitutions tended to induce higher antibody titers and neutralizing-antibody titers than the single-mutant RBD-Fc proteins. Meanwhile, both wild-type RBD-Fc protein and mutant RBD-Fc proteins induced significantly decreased neutralization capacity to the pseudovirus of B.1.351 and P.1 lineages than to the wild-type one. These data will facilitate the design and development of RBD-based subunit vaccines against SARS-COV-2 and its variants.


2021 ◽  
Author(s):  
Emily C. Gale ◽  
Abigail E. Powell ◽  
Gillie A. Roth ◽  
Ben S. Ou ◽  
Emily L. Meany ◽  
...  

The development of an effective vaccine that can be rapidly manufactured and distributed worldwide is necessary to mitigate the devastating health and economic impacts of pandemics like COVID-19. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, which mediates host cell entry of the virus, is an appealing antigen for subunit vaccines because it is easy to manufacture and highly stable. Moreover, RBD is a target for neutralizing antibodies and robust cytotoxic T lymphocyte responses. Unfortunately, RBD is poorly immunogenic. While most subunit vaccines are commonly formulated with adjuvants to enhance their immunogenicity, most common adjuvant combinations have not been sufficient to improve RBD immunogenicity and none have afforded neutralizing responses in a single-dose RBD vaccine. Here we show that sustained delivery of an RBD subunit vaccine in an injectable hydrogel depot formulation increases total anti-RBD IgG titers compared to bolus administration of the same vaccines. Notably, a SARS-CoV-2 spike-pseudotyped lentivirus neutralization assay revealed neutralizing antibodies in all mice after a single hydrogel vaccine administration comprising clinically-approved adjuvants Alum and CpG. Together, these results suggest that extending the exposure to RBD subunit vaccines significantly enhances the immunogenicity of RBD and induces neutralizing humoral immunity following a single immunization.


Antibodies ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 2
Author(s):  
Xiaoyan Zeng ◽  
Fiona Legge ◽  
Chao Huang ◽  
Xiao Zhang ◽  
Yongjun Jiao ◽  
...  

In this work, we have used a new method to predict the epitopes of HA1 protein of influenza virus to several antibodies HC19, CR9114, BH151 and 4F5. While our results reproduced the binding epitopes of H3N2 or H5N1 for the neutralizing antibodies HC19, CR9114, and BH151 as revealed from the available crystal structures, additional epitopes for these antibodies were also suggested. Moreover, the predicted epitopes of H5N1 HA1 for the newly developed antibody 4F5 are located at the receptor binding domain, while previous study identified a region 76-WLLGNP-81 as the epitope. The possibility of antibody recognition of influenza virus via different mechanism by binding to different epitopes of an antigen is also discussed.


2021 ◽  
Author(s):  
Yuko Nitahara ◽  
Yu Nakagama ◽  
Natsuko Kaku ◽  
Katherine Candray ◽  
Yu Michimuko ◽  
...  

The prompt rollout of the coronavirus disease (COVID-19) messenger RNA (mRNA) vaccine facilitated population immunity, which shall become more dominant than natural infection-induced immunity. At the beginning of the vaccine era, the initial epitope profile in naive individuals will be the first step to build an optimal host defense system towards vaccine-based population immunity. In this study, the high-resolution linear epitope profiles between Pfizer-BioNTech COVID-19 mRNA vaccine recipients and COVID-19 patients were delineated by using microarrays mapped with overlapping peptides of the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. The vaccine-induced antibodies targeting RBD had broader distribution across the RBD than that induced by the natural infection. The relatively lower neutralizing antibody titers observed in vaccine-induced sera could attribute to less efficient epitope selection and maturation of the vaccine-induced humoral immunity compared to the infection-induced. Furthermore, additional mutation panel assays showed that the vaccine-induced rich epitope variety targeting the RBD may aid antibodies to escape rapid viral evolution, which could grant an advantage to the vaccine immunity.


2020 ◽  
Author(s):  
Blake M. Hauser ◽  
Maya Sangesland ◽  
Evan C. Lam ◽  
Jared Feldman ◽  
Ashraf S. Yousif ◽  
...  

AbstractEffective countermeasures are needed against emerging coronaviruses of pandemic potential, similar to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Designing immunogens that elicit broadly neutralizing antibodies to conserved viral epitopes on the major surface glycoprotein, spike, such as the receptor binding domain (RBD) is one potential approach. Here, we report the generation of homotrimeric RBD immunogens from different sarbecoviruses using a stabilized, immune-silent trimerization tag. We find that that a cocktail of homotrimeric sarbecovirus RBDs can elicit a neutralizing response to all components even in context of prior SARS-CoV-2 imprinting. Importantly, the cross-neutralizing antibody responses are focused towards conserved RBD epitopes outside of the ACE-2 receptor-binding motif. This may be an effective strategy for eliciting broadly neutralizing responses leading to a pan-sarbecovirus vaccine.


2020 ◽  
Author(s):  
Maria G. Noval ◽  
Maria E. Kaczmarek ◽  
Akiko Koide ◽  
Bruno A. Rodriguez-Rodriguez ◽  
Ping Louie ◽  
...  

AbstractUnderstanding antibody responses to SARS-CoV-2 is indispensable for the development of containment measures to overcome the current COVID-19 pandemic. Here, we determine the ability of sera from 101 recovered healthcare workers to neutralize both authentic SARS-CoV-2 and SARS-CoV-2 pseudotyped virus and address their antibody titers against SARS-CoV-2 nucleoprotein and spike receptor-binding domain. Interestingly, the majority of individuals have low neutralization capacity and only 6% of the healthcare workers showed high neutralizing titers against both authentic SARS-CoV-2 virus and the pseudotyped virus. We found the antibody response to SARS-CoV-2 infection generates antigen-specific isotypes as well as a diverse combination of antibody isotypes, with high titers of IgG, IgM and IgA against both antigens correlating with neutralization capacity. Importantly, we found that neutralization correlated with antibody titers as quantified by ELISA. This suggests that an ELISA assay can be used to determine seroneutralization potential. Altogether, our work provides a snapshot of the SARS-CoV-2 neutralizing antibody response in recovered healthcare workers and provides evidence that possessing multiple antibody isotypes may play an important role in SARS-CoV-2 neutralization.


Sign in / Sign up

Export Citation Format

Share Document