scholarly journals Human ES and iPS Cells Display Less Drug Resistance Than Differentiated Cells, and Naïve-State Induction Further Decreases Drug Resistance

2020 ◽  
Author(s):  
Yulia Panina ◽  
Junko Yamane ◽  
Kenta Kobayashi ◽  
Hideko Sone ◽  
Wataru Fujibuchi

AbstractPluripotent stem cells (PSCs) possess unique characteristics that distinguish them from other cell types. Human embryonic stem (ES) cells are recently gaining attention as a powerful tool for human toxicity assessment without the use of experimental animals, and an embryonic stem cell test (EST) was introduced for this purpose. However, human PSCs have not been thoroughly investigated in terms of drug resistance or compared with other cell types or cell states, such as naïve state, to date. Aiming to close this gap in research knowledge, we assessed and compared several human PSC lines for their resistance to drug exposure. Firstly, we report that RIKEN-2A human induced pluripotent stem (iPS) cells possessed approximately the same sensitivity to selected drugs as KhES-3 human ES cells. Secondly, both ES and iPS cells were several times less resistant to drug exposure than other non-pluripotent cell types. Finally, we showed that iPS cells subjected to naïve-state induction procedures exhibited a sharp increase in drug sensitivity. Upon passage of these naïve-like cells in non-naïve PSC culture medium, their sensitivity to drug exposure decreased. We thus revealed differences in sensitivity to drug exposure among different types or states of PSCs and, importantly, indicated that naïve-state induction could increase this sensitivity.

2018 ◽  
Author(s):  
Margarete Diaz-Cuadros ◽  
Daniel E Wagner ◽  
Christoph Budjan ◽  
Alexis Hubaud ◽  
Jonathan Touboul ◽  
...  

The vertebral column is characterized by the periodic arrangement of vertebrae along the anterior-posterior (AP) axis. This segmental or metameric organization is established early in embryogenesis when pairs of embryonic segments called somites are rhythmically produced by the presomitic mesoderm (PSM). The tempo of somite formation is controlled by a molecular oscillator known as the segmentation clock 1,2. While this oscillator has been well characterized in model organisms 1,2, whether a similar oscillator exists in humans remains unknown. We have previously shown that human embryonic stem (ES) cells or induced pluripotent stem (iPS) cells can differentiate in vitro into PSM upon activation of the Wnt signaling pathway combined with BMP inhibition3. Here, we show that these human PSM cells exhibit Notch and YAP-dependent oscillations4 of the cyclic gene HES7 with a 5-hour period. Single cell RNA-sequencing comparison of the differentiating iPS cells with mouse PSM reveals that human PSM cells follow a similar differentiation path and exhibit a remarkably coordinated differentiation sequence. We also demonstrate that FGF signaling controls the phase and period of the oscillator. This contrasts with classical segmentation models such as the “Clock and Wavefront” 1,2,5, where FGF merely implements a signaling threshold specifying where oscillations stop. Overall, our work identifying the human segmentation clock represents an important breakthrough for human developmental biology.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Shixin Zhou ◽  
Yinan Liu ◽  
Ruopeng Feng ◽  
Caiyun Wang ◽  
Sibo Jiang ◽  
...  

Induced pluripotent stem (iPS) cells have been generated from human somatic cells by ectopic expression of four Yamanaka factors. Here, we report that Survivin, an apoptosis inhibitor, can enhance iPS cells generation from human neural progenitor cells (NPCs) together with one factor OCT4 (1F-OCT4-Survivin). Compared with 1F-OCT4, Survivin accelerates the process of reprogramming from human NPCs. The neurocyte-originated induced pluripotent stem (NiPS) cells generated from 1F-OCT4-Survivin resemble human embryonic stem (hES) cells in morphology, surface markers, global gene expression profiling, and epigenetic status. Survivin keeps high expression in both iPS and ES cells. During the process of NiPS cell to neural cell differentiation, the expression of Survivin is rapidly decreased in protein level. The mechanism of Survivin promotion of reprogramming efficiency from NPCs may be associated with stabilization ofβ-catenin in WNT signaling pathway. This hypothesis is supported by experiments of RT-PCR, chromatin immune-precipitation, and Western blot in human ES cells. Our results showed overexpression of Survivin could improve the efficiency of reprogramming from NPCs to iPS cells by one factor OCT4 through stabilization of the key molecule,β-catenin.


Endocrinology ◽  
2012 ◽  
Vol 153 (9) ◽  
pp. 4336-4345 ◽  
Author(s):  
Takuhiro Sonoyama ◽  
Masakatsu Sone ◽  
Kyoko Honda ◽  
Daisuke Taura ◽  
Katsutoshi Kojima ◽  
...  

Although there have been reports of the differentiation of mesenchymal stem cells and mouse embryonic stem (ES) cells into steroid-producing cells, the differentiation of human ES/induced pluripotent stem (iPS) cells into steroid-producing cells has not been reported. The purpose of our present study was to establish a method for inducing differentiation of human ES/iPS cells into steroid-producing cells. The first approach we tried was embryoid body formation and further culture on adherent plates. The resultant differentiated cells expressed mRNA encoding the steroidogenic enzymes steroidogenic acute regulatory protein, 3β-hydroxysteroid dehydrogenase, cytochrome P450-containing enzyme (CYP)-11A1, CYP17A1, and CYP19, and secreted progesterone was detected in the cell medium. However, expression of human chorionic gonadotropin was also detected, suggesting the differentiated cells were trophoblast like. We next tried a multistep approach. As a first step, human ES/iPS cells were induced to differentiate into the mesodermal lineage. After 7 d of differentiation induced by 6-bromoindirubin-3′-oxime (a glycogen synthase kinase-3β inhibitor), the human ES/iPS cells had differentiated into fetal liver kinase-1- and platelet derived growth factor receptor-α-expressing mesodermal lineage cells. As a second step, plasmid DNA encoding steroidogenic factor-1, a master regulator of steroidogenesis, was introduced into these mesodermal cells. The forced expression of steroidogenic factor-1 and subsequent addition of 8-bromoadenosine 3′,5′-cyclic monophosphate induced the mesodermal cells to differentiate into the steroidogenic cell lineage, and expression of CYP21A2 and CYP11B1, in addition to steroidogenic acute regulatory protein, 3β-hydroxysteroid dehydrogenase, CYP11A1, and CYP17A1, was detected. Moreover, secreted cortisol was detected in the medium, but human chorionic gonadotropin was not. These findings indicate that the steroid-producing cells obtained through the described multistep method are not trophoblast like; instead, they exhibit characteristics of adrenal cortical cells.


Reproduction ◽  
2014 ◽  
Vol 147 (6) ◽  
pp. R179-R188 ◽  
Author(s):  
Jingmei Hou ◽  
Shi Yang ◽  
Hao Yang ◽  
Yang Liu ◽  
Yun Liu ◽  
...  

Infertility is a major and largely incurable disease caused by disruption and loss of germ cells. It affects 10–15% of couples, and male factor accounts for half of the cases. To obtain human male germ cells ‘especially functional spermatids’ is essential for treating male infertility. Currently, much progress has been made on generating male germ cells, including spermatogonia, spermatocytes, and spermatids, from various types of stem cells. These germ cells can also be used in investigation of the pathology of male infertility. In this review, we focused on advances on obtaining male differentiated germ cells from different kinds of stem cells, with an emphasis on the embryonic stem (ES) cells, the induced pluripotent stem (iPS) cells, and spermatogonial stem cells (SSCs). We illustrated the generation of male differentiated germ cells from ES cells, iPS cells and SSCs, and we summarized the phenotype for these stem cells, spermatocytes and spermatids. Moreover, we address the differentiation potentials of ES cells, iPS cells and SSCs. We also highlight the advantages, disadvantages and concerns on derivation of the differentiated male germ cells from several types of stem cells. The ability of generating mature and functional male gametes from stem cells could enable us to understand the precise etiology of male infertility and offer an invaluable source of autologous male gametes for treating male infertility of azoospermia patients.


2008 ◽  
Vol 77 (2) ◽  
pp. 585-597 ◽  
Author(s):  
Jun Yu ◽  
Raffaella Rossi ◽  
Christine Hale ◽  
David Goulding ◽  
Gordon Dougan

ABSTRACT Embryonic stem (ES) cells are susceptible to genetic manipulation and retain the potential to differentiate into diverse cell types, which are factors that make them potentially attractive cells for studying host-pathogen interactions. Murine ES cells were found to be susceptible to invasion by Salmonella enterica serovar Typhimurium and Shigella flexneri and to the formation of attaching and effacing lesions by enteropathogenic Escherichia coli. S. enterica serovar Typhimurium and S. flexneri cell entry was dependent on the Salmonella pathogenicity island 1 and Shigella mxi/spa type III secretion systems, respectively. Microscopy studies indicated that both S. enterica serovar Typhimurium and S. flexneri were located in intracellular niches in ES cells that were similar to the niches occupied in differentiated cells. ES cells were eventually killed following bacterial invasion, but no evidence of activation of classical caspase-associated apoptotic or innate immune pathways was found. To demonstrate the potential of mutant ES cells, we employed an ES cell line defective in cholesterol synthesis and found that the mutant cells were less susceptible to infection by Salmonella and Shigella than the parental ES cells. Thus, we highlighted the practical use of genetically modified ES cells for studying microbe-host interactions.


Sign in / Sign up

Export Citation Format

Share Document