scholarly journals Primary visual cortex injury produces loss of inhibitory neurons and long-term visual circuit dysfunction

2020 ◽  
Author(s):  
Jan C. Frankowski ◽  
Andrzej T. Foik ◽  
Jiana R. Machhor ◽  
David C. Lyon ◽  
Robert F. Hunt

SummaryPrimary sensory areas of the mammalian neocortex have a remarkable degree of plasticity, allowing neural circuits to adapt to dynamic environments. However, little is known about the effect of traumatic brain injury on visual system function. Here we applied a mild focal contusion injury to primary visual cortex (V1) in adult mice. We found that, although V1 was largely intact in brain-injured mice, there was a reduction in the number of inhibitory interneurons that extended into deep cortical layers. In general, we found a preferential reduction of interneurons located in superficial layers, near the impact site, while interneurons positioned in deeper layers were better preserved. Three months after injury, V1 neurons showed dramatically reduced responses to visual stimuli and weaker orientation selectivity and tuning, consistent with the loss of cortical inhibition. Our results demonstrate that V1 neurons no longer robustly and stably encode visual input following a mild traumatic injury.HighlightsInhibitory neurons are lost throughout brain injured visual cortexVisually-evoked potentials are severely degraded after injuryInjured V1 neurons show weaker selectivity and tuning consistent with reduced interneurons

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jan C. Frankowski ◽  
Andrzej T. Foik ◽  
Alexa Tierno ◽  
Jiana R. Machhor ◽  
David C. Lyon ◽  
...  

AbstractPrimary sensory areas of the mammalian neocortex have a remarkable degree of plasticity, allowing neural circuits to adapt to dynamic environments. However, little is known about the effects of traumatic brain injury on visual circuit function. Here we used anatomy and in vivo electrophysiological recordings in adult mice to quantify neuron responses to visual stimuli two weeks and three months after mild controlled cortical impact injury to primary visual cortex (V1). We found that, although V1 remained largely intact in brain-injured mice, there was ~35% reduction in the number of neurons that affected inhibitory cells more broadly than excitatory neurons. V1 neurons showed dramatically reduced activity, impaired responses to visual stimuli and weaker size selectivity and orientation tuning in vivo. Our results show a single, mild contusion injury produces profound and long-lasting impairments in the way V1 neurons encode visual input. These findings provide initial insight into cortical circuit dysfunction following central visual system neurotrauma.


2019 ◽  
Vol 121 (6) ◽  
pp. 2202-2214 ◽  
Author(s):  
John P. McClure ◽  
Pierre-Olivier Polack

Multimodal sensory integration facilitates the generation of a unified and coherent perception of the environment. It is now well established that unimodal sensory perceptions, such as vision, are improved in multisensory contexts. Whereas multimodal integration is primarily performed by dedicated multisensory brain regions such as the association cortices or the superior colliculus, recent studies have shown that multisensory interactions also occur in primary sensory cortices. In particular, sounds were shown to modulate the responses of neurons located in layers 2/3 (L2/3) of the mouse primary visual cortex (V1). Yet, the net effect of sound modulation at the V1 population level remained unclear. In the present study, we performed two-photon calcium imaging in awake mice to compare the representation of the orientation and the direction of drifting gratings by V1 L2/3 neurons in unimodal (visual only) or multimodal (audiovisual) conditions. We found that sound modulation depended on the tuning properties (orientation and direction selectivity) and response amplitudes of V1 L2/3 neurons. Sounds potentiated the responses of neurons that were highly tuned to the cue’s orientation and direction but weakly active in the unimodal context, following the principle of inverse effectiveness of multimodal integration. Moreover, sound suppressed the responses of neurons untuned for the orientation and/or the direction of the visual cue. Altogether, sound modulation improved the representation of the orientation and direction of the visual stimulus in V1 L2/3. Namely, visual stimuli presented with auditory stimuli recruited a neuronal population better tuned to the visual stimulus orientation and direction than when presented alone. NEW & NOTEWORTHY The primary visual cortex (V1) receives direct inputs from the primary auditory cortex. Yet, the impact of sounds on visual processing in V1 remains controverted. We show that the modulation by pure tones of V1 visual responses depends on the orientation selectivity, direction selectivity, and response amplitudes of V1 neurons. Hence, audiovisual stimuli recruit a population of V1 neurons better tuned to the orientation and direction of the visual stimulus than unimodal visual stimuli.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Brittany C. Clawson ◽  
Emily J. Pickup ◽  
Amy Ensing ◽  
Laura Geneseo ◽  
James Shaver ◽  
...  

AbstractLearning-activated engram neurons play a critical role in memory recall. An untested hypothesis is that these same neurons play an instructive role in offline memory consolidation. Here we show that a visually-cued fear memory is consolidated during post-conditioning sleep in mice. We then use TRAP (targeted recombination in active populations) to genetically label or optogenetically manipulate primary visual cortex (V1) neurons responsive to the visual cue. Following fear conditioning, mice respond to activation of this visual engram population in a manner similar to visual presentation of fear cues. Cue-responsive neurons are selectively reactivated in V1 during post-conditioning sleep. Mimicking visual engram reactivation optogenetically leads to increased representation of the visual cue in V1. Optogenetic inhibition of the engram population during post-conditioning sleep disrupts consolidation of fear memory. We conclude that selective sleep-associated reactivation of learning-activated sensory populations serves as a necessary instructive mechanism for memory consolidation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Caitlin Siu ◽  
Justin Balsor ◽  
Sam Merlin ◽  
Frederick Federer ◽  
Alessandra Angelucci

AbstractThe mammalian sensory neocortex consists of hierarchically organized areas reciprocally connected via feedforward (FF) and feedback (FB) circuits. Several theories of hierarchical computation ascribe the bulk of the computational work of the cortex to looped FF-FB circuits between pairs of cortical areas. However, whether such corticocortical loops exist remains unclear. In higher mammals, individual FF-projection neurons send afferents almost exclusively to a single higher-level area. However, it is unclear whether FB-projection neurons show similar area-specificity, and whether they influence FF-projection neurons directly or indirectly. Using viral-mediated monosynaptic circuit tracing in macaque primary visual cortex (V1), we show that V1 neurons sending FF projections to area V2 receive monosynaptic FB inputs from V2, but not other V1-projecting areas. We also find monosynaptic FB-to-FB neuron contacts as a second motif of FB connectivity. Our results support the existence of FF-FB loops in primate cortex, and suggest that FB can rapidly and selectively influence the activity of incoming FF signals.


2000 ◽  
Vol 17 (1) ◽  
pp. 71-76 ◽  
Author(s):  
JOHN D. ALLISON ◽  
PETER MELZER ◽  
YUCHUAN DING ◽  
A.B. BONDS ◽  
VIVIEN A. CASAGRANDE

How neurons in the primary visual cortex (V1) of primates process parallel inputs from the magnocellular (M) and parvocellular (P) layers of the lateral geniculate nucleus (LGN) is not completely understood. To investigate whether signals from the two pathways are integrated in the cortex, we recorded contrast-response functions (CRFs) from 20 bush baby V1 neurons before, during, and after pharmacologically inactivating neural activity in either the contralateral LGN M or P layers. Inactivating the M layer reduced the responses of V1 neurons (n = 10) to all stimulus contrasts and significantly elevated (t = 8.15, P < 0.01) their average contrast threshold from 8.04 (± 4.1)% contrast to 22.46 (± 6.28)% contrast. M layer inactivation also significantly reduced (t = 4.06, P < 0.01) the average peak response amplitude. Inactivating the P layer did not elevate the average contrast threshold of V1 neurons (n = 10), but significantly reduced (t = 4.34, P < 0.01) their average peak response amplitude. These data demonstrate that input from the M pathway can account for the responses of V1 neurons to low stimulus contrasts and also contributes to responses to high stimulus contrasts. The P pathway appears to influence mainly the responses of V1 neurons to high stimulus contrasts. None of the cells in our sample, which included cells in all output layers of V1, appeared to receive input from only one pathway. These findings support the view that many V1 neurons integrate information about stimulus contrast carried by the LGN M and P pathways.


2000 ◽  
Vol 83 (2) ◽  
pp. 1019-1030 ◽  
Author(s):  
Valentin Dragoi ◽  
Mriganka Sur

A fundamental feature of neural circuitry in the primary visual cortex (V1) is the existence of recurrent excitatory connections between spiny neurons, recurrent inhibitory connections between smooth neurons, and local connections between excitatory and inhibitory neurons. We modeled the dynamic behavior of intermixed excitatory and inhibitory populations of cells in V1 that receive input from the classical receptive field (the receptive field center) through feedforward thalamocortical afferents, as well as input from outside the classical receptive field (the receptive field surround) via long-range intracortical connections. A counterintuitive result is that the response of oriented cells can be facilitated beyond optimal levels when the surround stimulus is cross-oriented with respect to the center and suppressed when the surround stimulus is iso-oriented. This effect is primarily due to changes in recurrent inhibition within a local circuit. Cross-oriented surround stimulation leads to a reduction of presynaptic inhibition and a supraoptimal response, whereas iso-oriented surround stimulation has the opposite effect. This mechanism is used to explain the orientation and contrast dependence of contextual interactions in primary visual cortex: responses to a center stimulus can be both strongly suppressed and supraoptimally facilitated as a function of surround orientation, and these effects diminish as stimulus contrast decreases.


2018 ◽  
Author(s):  
Petr Znamenskiy ◽  
Mean-Hwan Kim ◽  
Dylan R. Muir ◽  
Maria Florencia Iacaruso ◽  
Sonja B. Hofer ◽  
...  

In the cerebral cortex, the interaction of excitatory and inhibitory synaptic inputs shapes the responses of neurons to sensory stimuli, stabilizes network dynamics1 and improves the efficiency and robustness of the neural code2–4. Excitatory neurons receive inhibitory inputs that track excitation5–8. However, how this co-tuning of excitation and inhibition is achieved by cortical circuits is unclear, since inhibitory interneurons are thought to pool the inputs of nearby excitatory cells and provide them with non-specific inhibition proportional to the activity of the local network9–13. Here we show that although parvalbumin-expressing (PV) inhibitory cells in mouse primary visual cortex make connections with the majority of nearby pyramidal cells, the strength of their synaptic connections is structured according to the similarity of the cells’ responses. Individual PV cells strongly inhibit those pyramidal cells that provide them with strong excitation and share their visual selectivity. This fine-tuning of synaptic weights supports co-tuning of inhibitory and excitatory inputs onto individual pyramidal cells despite dense connectivity between inhibitory and excitatory neurons. Our results indicate that individual PV cells are preferentially integrated into subnetworks of inter-connected, co-tuned pyramidal cells, stabilising their recurrent dynamics. Conversely, weak but dense inhibitory connectivity between subnetworks is sufficient to support competition between them, de-correlating their output. We suggest that the history and structure of correlated firing adjusts the weights of both inhibitory and excitatory connections, supporting stable amplification and selective recruitment of cortical subnetworks.


Perception ◽  
2022 ◽  
Vol 51 (1) ◽  
pp. 60-69
Author(s):  
Li Zhaoping

Finding a target among uniformly oriented non-targets is typically faster when this target is perpendicular, rather than parallel, to the non-targets. The V1 Saliency Hypothesis (V1SH), that neurons in the primary visual cortex (V1) signal saliency for exogenous attentional attraction, predicts exactly the opposite in a special case: each target or non-target comprises two equally sized disks displaced from each other by 1.2 disk diameters center-to-center along a line defining its orientation. A target has two white or two black disks. Each non-target has one white disk and one black disk, and thus, unlike the target, activates V1 neurons less when its orientation is parallel rather than perpendicular to the neurons’ preferred orientations. When the target is parallel, rather than perpendicular, to the uniformly oriented non-targets, the target’s evoked V1 response escapes V1’s iso-orientation surround suppression, making the target more salient. I present behavioral observations confirming this prediction.


2016 ◽  
Vol 371 (1697) ◽  
pp. 20150255 ◽  
Author(s):  
Sid Henriksen ◽  
Seiji Tanabe ◽  
Bruce Cumming

The first step in binocular stereopsis is to match features on the left retina with the correct features on the right retina, discarding ‘false’ matches. The physiological processing of these signals starts in the primary visual cortex, where the binocular energy model has been a powerful framework for understanding the underlying computation. For this reason, it is often used when thinking about how binocular matching might be performed beyond striate cortex. But this step depends critically on the accuracy of the model, and real V1 neurons show several properties that suggest they may be less sensitive to false matches than the energy model predicts. Several recent studies provide empirical support for an extended version of the energy model, in which the same principles are used, but the responses of single neurons are described as the sum of several subunits, each of which follows the principles of the energy model. These studies have significantly improved our understanding of the role played by striate cortex in the stereo correspondence problem. This article is part of the themed issue ‘Vision in our three-dimensional world’.


Sign in / Sign up

Export Citation Format

Share Document