scholarly journals Linking genomic signatures of selection to expression variation and direct evidence of local adaptation

2020 ◽  
Author(s):  
Nicholas Price ◽  
Jack L. Mullen ◽  
Junjiang Lin ◽  
Christina Boucher ◽  
John K. McKay

AbstractUnderstanding how genomic and expression variation is linked to adaptation of plants to local environments is fundamental to the fields of evolutionary biology and species conservation. Using locally adapted Arabidopsis thaliana Italy and Sweden populations, we examine how variation in gene expression under control and cold acclimation conditions, is linked to allele frequency differentiation (AFD); linkage disequilibrium (LD); selective constraint at nonsynonymous sites; and genetic-tradeoff quantitative trait loci (GT-QTL). Our results indicate that contrary to genes showing a main effect in environment (E), expression genotype by environment interactions (GxE) show significantly higher AFD along cis-regulatory and nonsynonymous sites than the neutral expectation; and interestingly, highly differentiated GxE genes show higher expression and inter-species selective constraint than the rest of the genes. When examining the association between genomic signatures of selection along GxE/E genes and GT-QTL, we find that GxE genes showing a high AFD and LD, display a significant and much higher enrichment along GT-QTL than the genome-wide/E set of genes. Nonetheless, E genes show a higher enrichment than the genome-wide control. In summary, our results suggest, that these highly expressed and selectively constrained GxE genes, may have been part of a cold-responsive regulon of E genes that experienced recent selection when migrating to new environments. Candidate GxE genes underlying GT-QTL reveal interesting biological processes that may underlie local adaptation to temperature, including flowering time, light-dependent cold acclimation, freezing tolerance, and response to hypoxia. Finally, we find no evidence linking lower expression of the CBF-dependent freezing tolerance pathway to genetic-tradeoffs and adaptation to warmer climates.

2019 ◽  
Author(s):  
Daniel Fernández Marchán ◽  
Marta Novo ◽  
Nuria Sánchez ◽  
Jorge Domínguez ◽  
Darío J. Díaz Cosín ◽  
...  

AbstractUncovering the genetic and evolutionary basis of cryptic speciation is a major focus of evolutionary biology. Next Generation Sequencing (NGS) allows the identification of genome-wide local adaptation signatures, but has rarely been applied to cryptic complexes - particularly in the soil milieu - as is the case with integrative taxonomy. The earthworm genus Carpetania, comprising six previously suggested putative cryptic lineages, is a promising model to study the evolutionary phenomena shaping cryptic speciation in soil-dwelling lineages. Genotyping-By-Sequencing (GBS) was used to provide genome-wide information about genetic variability between seventeen populations, and geometric morphometrics analyses of genital chaetae were performed to investigate unexplored cryptic morphological evolution. Genomic analyses revealed the existence of three cryptic species, with half of the previously-identified potential cryptic lineages clustering within them. Local adaptation was detected in more than 800 genes putatively involved in a plethora of biological functions (most notably reproduction, metabolism, immunological response and morphogenesis). Several genes with selection signatures showed shared mutations for each of the cryptic species, and genes under selection were enriched in functions related to regulation of transcription, including SNPs located in UTR regions. Finally, geometric morphometrics approaches partially confirmed the phylogenetic signal of relevant morphological characters such as genital chaetae. Our study therefore unveils that local adaptation and regulatory divergence are key evolutionary forces orchestrating genome evolution in soil fauna.


2019 ◽  
Vol 110 (4) ◽  
pp. 494-513 ◽  
Author(s):  
Adam G Jones ◽  
Stevan J Arnold ◽  
Reinhard Bürger

Abstract With the advent of next-generation sequencing approaches, the search for individual loci underlying local adaptation has become a major enterprise in evolutionary biology. One promising method to identify such loci is to examine genome-wide patterns of differentiation, using an FST-outlier approach. The effects of pleiotropy and epistasis on this approach are not yet known. Here, we model 2 populations of a sexually reproducing, diploid organism with 2 quantitative traits, one of which is involved in local adaptation. We consider genetic architectures with and without pleiotropy and epistasis. We also model neutral marker loci on an explicit genetic map as the 2 populations diverge and apply FST outlier approaches to determine the extent to which quantitative trait loci (QTL) are detectable. Our results show, under a wide range of conditions, that only a small number of QTL are typically responsible for most of the trait divergence between populations, even when inheritance is highly polygenic. We find that the loci making the largest contributions to trait divergence tend to be detectable outliers. These loci also make the largest contributions to within-population genetic variance. The addition of pleiotropy reduces the extent to which quantitative traits can evolve independently but does not reduce the efficacy of outlier scans. The addition of epistasis, however, reduces the mean FST values for causative QTL, making these loci more difficult, but not impossible, to detect in outlier scans.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Lluis Franch-Gras ◽  
Christoph Hahn ◽  
Eduardo M. García-Roger ◽  
María José Carmona ◽  
Manuel Serra ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Todd R. Robeck ◽  
Zhe Fei ◽  
Ake T. Lu ◽  
Amin Haghani ◽  
Eve Jourdain ◽  
...  

AbstractThe development of a precise blood or skin tissue DNA Epigenetic Aging Clock for Odontocete (OEAC) would solve current age estimation inaccuracies for wild odontocetes. Therefore, we determined genome-wide DNA methylation profiles using a custom array (HorvathMammalMethyl40) across skin and blood samples (n = 446) from known age animals representing nine odontocete species within 4 phylogenetic families to identify age associated CG dinucleotides (CpGs). The top CpGs were used to create a cross-validated OEAC clock which was highly correlated for individuals (r = 0.94) and for unique species (median r = 0.93). Finally, we applied the OEAC for estimating the age and sex of 22 wild Norwegian killer whales. DNA methylation patterns of age associated CpGs are highly conserved across odontocetes. These similarities allowed us to develop an odontocete epigenetic aging clock (OEAC) which can be used for species conservation efforts by provide a mechanism for estimating the age of free ranging odontocetes from either blood or skin samples.


Author(s):  
Le Wang ◽  
Fei Sun ◽  
Zi Yi Wan ◽  
Baoqing Ye ◽  
Yanfei Wen ◽  
...  

Abstract Resolving the genomic basis underlying phenotypic variations is a question of great importance in evolutionary biology. However, understanding how genotypes determine the phenotypes is still challenging. Centuries of artificial selective breeding for beauty and aggression resulted in a plethora of colors, long fin varieties, and hyper-aggressive behavior in the air-breathing Siamese fighting fish (Betta splendens), supplying an excellent system for studying the genomic basis of phenotypic variations. Combining whole genome sequencing, QTL mapping, genome-wide association studies and genome editing, we investigated the genomic basis of huge morphological variation in fins and striking differences in coloration in the fighting fish. Results revealed that the double tail, elephant ear, albino and fin spot mutants each were determined by single major-effect loci. The elephant ear phenotype was likely related to differential expression of a potassium ion channel gene, kcnh8. The albinotic phenotype was likely linked to a cis-regulatory element acting on the mitfa gene and the double tail mutant was suggested to be caused by a deletion in a zic1/zic4 co-enhancer. Our data highlight that major loci and cis-regulatory elements play important roles in bringing about phenotypic innovations and establish Bettas as new powerful model to study the genomic basis of evolved changes.


2021 ◽  
Vol 13 (4) ◽  
Author(s):  
Camilla A Santos ◽  
Gabriel G Sonoda ◽  
Thainá Cortez ◽  
Luiz L Coutinho ◽  
Sónia C S Andrade

Abstract Understanding how selection shapes population differentiation and local adaptation in marine species remains one of the greatest challenges in the field of evolutionary biology. The selection of genes in response to environment-specific factors and microenvironmental variation often results in chaotic genetic patchiness, which is commonly observed in rocky shore organisms. To identify these genes, the expression profile of the marine gastropod Littoraria flava collected from four Southeast Brazilian locations in ten rocky shore sites was analyzed. In this first L. flava transcriptome, 250,641 unigenes were generated, and 24% returned hits after functional annotation. Independent paired comparisons between 1) transects, 2) sites within transects, and 3) sites from different transects were performed for differential expression, detecting 8,622 unique differentially expressed genes. Araçá (AR) and São João (SJ) transect comparisons showed the most divergent gene products. For local adaptation, fitness-related differentially expressed genes were chosen for selection tests. Nine and 24 genes under adaptative and purifying selection, respectively, were most related to biomineralization in AR and chaperones in SJ. The biomineralization-genes perlucin and gigasin-6 were positively selected exclusively in the site toward the open ocean in AR, with sequence variants leading to pronounced protein structure changes. Despite an intense gene flow among L. flava populations due to its planktonic larva, gene expression patterns within transects may be the result of selective pressures. Our findings represent the first step in understanding how microenvironmental genetic variation is maintained in rocky shore populations and the mechanisms underlying local adaptation in marine species.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Wim Gorssen ◽  
Roel Meyermans ◽  
Steven Janssens ◽  
Nadine Buys

Abstract Background Runs of homozygosity (ROH) have become the state-of-the-art method for analysis of inbreeding in animal populations. Moreover, ROH are suited to detect signatures of selection via ROH islands and are used in other applications, such as genomic prediction and genome-wide association studies (GWAS). Currently, a vast amount of single nucleotide polymorphism (SNP) data is available online, but most of these data have never been used for ROH analysis. Therefore, we performed a ROH analysis on large medium-density SNP datasets in eight animal species (cat, cattle, dog, goat, horse, pig, sheep and water buffalo; 442 different populations) and make these results publicly available. Results The results include an overview of ROH islands per population and a comparison of the incidence of these ROH islands among populations from the same species, which can assist researchers when studying other (livestock) populations or when looking for similar signatures of selection. We were able to confirm many known ROH islands, for example signatures of selection for the myostatin (MSTN) gene in sheep and horses. However, our results also included multiple other ROH islands, which are common to many populations and not identified to date (e.g. on chromosomes D4 and E2 in cats and on chromosome 6 in sheep). Conclusions We are confident that our repository of ROH islands is a valuable reference for future studies. The discovered ROH island regions represent a unique starting point for new studies or can be used as a reference for future studies. Furthermore, we encourage authors to add their population-specific ROH findings to our repository.


Sign in / Sign up

Export Citation Format

Share Document