scholarly journals Dynamics of neural microstates in the VTA-striatal-prefrontal loop during novelty exploration in the rat

2020 ◽  
Author(s):  
A. Mishra ◽  
N. Marzban ◽  
M. X Cohen ◽  
B. Englitz

AbstractEEG microstates refer to quasi-stable spatial patterns of scalp potentials, and their dynamics have been linked to cognitive and behavioral states. Neural activity at single and multiunit levels also exhibit spatiotemporal coordination, but this spatial scale is difficult to relate to EEG. Here, we translated EEG microstate analysis to triple-area local field potential (LFP) recordings from up to 192 electrodes in rats to investigate the mesoscopic dynamics of neural microstates within and across brain regions.We performed simultaneous recordings from the prefrontal cortex (PFC), striatum (STR), and ventral tegmental area (VTA) during awake behavior (object novelty and exploration). We found that the LFP data can be accounted for by multiple, recurring, quasi-stable spatial activity patterns with an average period of stability of ~60-100 ms. The top four maps accounted for 60-80% of the total variance, compared to ~25% for shuffled data. Cross-correlation of the microstate time-series across brain regions revealed rhythmic patterns of microstate activations, which we interpret as a novel indicator of inter-regional, mesoscale synchronization. Furthermore, microstate features, and patterns of temporal correlations across microstates, were modulated by behavioural states such as movement and novel object exploration. These results support the existence of a functional mesoscopic organization across multiple brain areas, and open up the opportunity to investigate their relation to EEG microstates, of particular interest to the human research community.Significance StatementThe coordination of neural activity across the entire brain has remained elusive. Here we combine large-scale neural recordings at fine spatial resolution with the analysis of microstates, i.e. short-lived, recurring spatial patterns of neural activity. We demonstrate that the local activity in different brain areas can be accounted for by only a few microstates per region. These microstates exhibited temporal dynamics that were correlated across regions in rhythmic patterns. We demonstrate that these microstates are linked to behavior and exhibit different properties in the frequency domain during different behavioural states. In summary, LFP microstates provide an insightful approach to studying both mesoscopic and large-scale brain activation within and across regions.

2020 ◽  
Author(s):  
Michael X Cohen ◽  
Bernhard Englitz ◽  
Arthur S C França

AbstractNeural activity is coordinated across multiple spatial and temporal scales, and these patterns of coordination are implicated in both healthy and impaired cognitive operations. However, empirical cross-scale investigations are relatively infrequent, due to limited data availability and to the difficulty of analyzing rich multivariate datasets. Here we applied frequency-resolved multivariate source-separation analyses to characterize a large-scale dataset comprising spiking and local field potential activity recorded simultaneously in three brain regions (prefrontal cortex, parietal cortex, hippocampus) in freely-moving mice. We identified a constellation of multidimensional, inter-regional networks across a range of frequencies (2-200 Hz). These networks were reproducible within animals across different recording sessions, but varied across different animals, suggesting individual variability in network architecture. The theta band (~4-10 Hz) networks had several prominent features, including roughly equal contribution from all regions and strong inter-network synchronization. Overall, these findings demonstrate a multidimensional landscape of large-scale functional activations of cortical networks operating across multiple spatial, spectral, and temporal scales during open-field exploration.Significance statementNeural activity is synchronized over space, time, and frequency. To characterize the dynamics of large-scale networks spanning multiple brain regions, we recorded data from the prefrontal cortex, parietal cortex, and hippocampus in awake behaving mice, and pooled data from spiking activity and local field potentials into one data matrix. Frequency-specific multivariate decomposition methods revealed a cornucopia of neural networks defined by coherent spatiotemporal patterns over time. These findings reveal a rich, dynamic, and multivariate landscape of large-scale neural activity patterns during foraging behavior.


2021 ◽  
Author(s):  
Atulya Iyengar ◽  
Chun-Fang Wu

Hypersynchronous neural activity is a characteristic feature of seizures. Although many Drosophila mutants of epilepsy-related genes display clear behavioral spasms and motor unit hyperexcitability, field potential measurements of aberrant hypersynchronous activity across brain regions during seizures have yet to be described. Here, we report a straightforward method to observe local field potentials (LFPs) from the Drosophila brain to monitor ensemble neural activity during seizures in behaving tethered flies. High frequency stimulation across the brain reliably triggers a stereotypic sequence of electroconvulsive seizure (ECS) spike discharges readily detectable in the dorsal longitudinal muscle (DLM) and coupled with behavioral spasms. During seizure episodes, the LFP signal displayed characteristic large-amplitude oscillations with a stereotypic temporal correlation to DLM flight muscle spiking. ECS-related LFP events were clearly distinct from rest- and flight-associated LFP patterns. We further characterized the LFP activity during different types of seizures originating from genetic and pharmacological manipulations. In the 'bang-sensitive' sodium channel mutant bangsenseless (bss), the LFP pattern was prolonged, and the temporal correlation between LFP oscillations and DLM discharges was altered. Following administration of the pro-convulsant GABAA blocker picrotoxin, we uncovered a qualitatively different LFP activity pattern, which consisted of a slow (1-Hz), repetitive, waveform, closely coupled with DLM bursting and behavioral spasms. Our approach to record brain LFPs presents an initial framework for electrophysiological analysis of the complex brain-wide activity patterns in the large collection of Drosophila excitability mutants.


2021 ◽  
Author(s):  
Stephan Krohn ◽  
Nina von Schwanenflug ◽  
Leonhard Waschke ◽  
Amy Romanello ◽  
Martin Gell ◽  
...  

The human brain operates in large-scale functional networks, collectively subsumed as the functional connectome1-13. Recent work has begun to unravel the organization of the connectome, including the temporal dynamics of brain states14-20, the trade-off between segregation and integration9,15,21-23, and a functional hierarchy from lower-order unimodal to higher-order transmodal processing systems24-27. However, it remains unknown how these network properties are embedded in the brain and if they emerge from a common neural foundation. Here we apply time-resolved estimation of brain signal complexity to uncover a unifying principle of brain organization, linking the connectome to neural variability6,28-31. Using functional magnetic resonance imaging (fMRI), we show that neural activity is marked by spontaneous "complexity drops" that reflect episodes of increased pattern regularity in the brain, and that functional connections among brain regions are an expression of their simultaneous engagement in such episodes. Moreover, these complexity drops ubiquitously propagate along cortical hierarchies, suggesting that the brain intrinsically reiterates its own functional architecture. Globally, neural activity clusters into temporal complexity states that dynamically shape the coupling strength and configuration of the connectome, implementing a continuous re-negotiation between cost-efficient segregation and communication-enhancing integration9,15,21,23. Furthermore, complexity states resolve the recently discovered association between anatomical and functional network hierarchies comprehensively25-27,32. Finally, brain signal complexity is highly sensitive to age and reflects inter-individual differences in cognition and motor function. In sum, we identify a spatiotemporal complexity architecture of neural activity — a functional "complexome" that gives rise to the network organization of the human brain.


2021 ◽  
Author(s):  
Xin Hu ◽  
Shahrukh Khanzada ◽  
Diana Klütsch ◽  
Federico Calegari ◽  
Hayder Amin

ABSTRACTLarge-scale multi-site biosensors are essential to probe the olfactory bulb (OB) circuitry for understanding the spatiotemporal dynamics of simultaneous discharge patterns. Current ex-vivo electrophysiological techniques are limited to recording a small set of neurons and cannot provide an inadequate resolution, which hinders revealing the fast dynamic underlying the information coding mechanisms in the OB circuit. Here, we demonstrate a novel biohybrid OB-CMOS platform to decipher the cross-scale dynamics of OB electrogenesis and quantify the distinct neuronal coding properties. The approach with 4096-microelectrodes offers a non-invasive, label-free, bioelectrical imaging to decode simultaneous firing patterns from thousands of connected neuronal ensembles in acute OB slices. The platform can measure spontaneous and drug-induced extracellular field potential activity. We employ our OB-CMOS recordings to perform multidimensional analysis to instantiate specific neurophysiological metrics underlying the olfactory spatiotemporal coding that emerged from the OB interconnected layers. Our results delineate the computational implications of large-scale activity patterns in functional olfactory processing. The high-content characterization of the olfactory circuit could benefit better functional interrogations of the olfactory spatiotemporal coding, connectivity mapping, and, further, the designing of reliable and advanced olfactory cell-based biosensors for diagnostic biomarkers and drug discovery.


2016 ◽  
Author(s):  
George Dimitriadis ◽  
Joana Neto ◽  
Adam R. Kampff

AbstractElectrophysiology is entering the era of ‘Big Data’. Multiple probes, each with hundreds to thousands of individual electrodes, are now capable of simultaneously recording from many brain regions. The major challenge confronting these new technologies is transforming the raw data into physiologically meaningful signals, i.e. single unit spikes. Sorting the spike events of individual neurons from a spatiotemporally dense sampling of the extracellular electric field is a problem that has attracted much attention [22, 23], but is still far from solved. Current methods still rely on human input and thus become unfeasible as the size of the data sets grow exponentially.Here we introduce the t-student stochastic neighbor embedding (t-sne) dimensionality reduction method [27] as a visualization tool in the spike sorting process. T-sne embeds the n-dimensional extracellular spikes (n = number of features by which each spike is decomposed) into a low (usually two) dimensional space. We show that such embeddings, even starting from different feature spaces, form obvious clusters of spikes that can be easily visualized and manually delineated with a high degree of precision. We propose that these clusters represent single units and test this assertion by applying our algorithm on labeled data sets both from hybrid [23] and paired juxtacellular/extracellular recordings [15]. We have released a graphical user interface (gui) written in python as a tool for the manual clustering of the t-sne embedded spikes and as a tool for an informed overview and fast manual curration of results from other clustering algorithms. Furthermore, the generated visualizations offer evidence in favor of the use of probes with higher density and smaller electrodes. They also graphically demonstrate the diverse nature of the sorting problem when spikes are recorded with different methods and arise from regions with different background spiking statistics.


Author(s):  
KW Scangos ◽  
AN Khambhati ◽  
PM Daly ◽  
LW Owen ◽  
JR Manning ◽  
...  

AbstractQuantitative biological substrates of depression remain elusive. We carried out this study to determine whether application of a novel computational approach to high spatiotemporal resolution direct neural recordings may unlock the functional organization and coordinated activity patterns of depression networks. We identified two subnetworks conserved across the majority of individuals studied. The first was characterized by left temporal lobe hypoconnectivity and pathological beta activity. The second was characterized by a hypoactive, but hyperconnected left frontal cortex. These findings identify distributed circuit activity associated with depression, link neural activity with functional connectivity profiles, and inform strategies for personalized targeted intervention.


2019 ◽  
Vol 116 (32) ◽  
pp. 16056-16061 ◽  
Author(s):  
Elie Rassi ◽  
Andreas Wutz ◽  
Nadia Müller-Voggel ◽  
Nathan Weisz

Ongoing fluctuations in neural excitability and in networkwide activity patterns before stimulus onset have been proposed to underlie variability in near-threshold stimulus detection paradigms—that is, whether or not an object is perceived. Here, we investigated the impact of prestimulus neural fluctuations on the content of perception—that is, whether one or another object is perceived. We recorded neural activity with magnetoencephalography (MEG) before and while participants briefly viewed an ambiguous image, the Rubin face/vase illusion, and required them to report their perceived interpretation in each trial. Using multivariate pattern analysis, we showed robust decoding of the perceptual report during the poststimulus period. Applying source localization to the classifier weights suggested early recruitment of primary visual cortex (V1) and ∼160-ms recruitment of the category-sensitive fusiform face area (FFA). These poststimulus effects were accompanied by stronger oscillatory power in the gamma frequency band for face vs. vase reports. In prestimulus intervals, we found no differences in oscillatory power between face vs. vase reports in V1 or in FFA, indicating similar levels of neural excitability. Despite this, we found stronger connectivity between V1 and FFA before face reports for low-frequency oscillations. Specifically, the strength of prestimulus feedback connectivity (i.e., Granger causality) from FFA to V1 predicted not only the category of the upcoming percept but also the strength of poststimulus neural activity associated with the percept. Our work shows that prestimulus network states can help shape future processing in category-sensitive brain regions and in this way bias the content of visual experiences.


2017 ◽  
Vol 114 (48) ◽  
pp. 12827-12832 ◽  
Author(s):  
Diego Vidaurre ◽  
Stephen M. Smith ◽  
Mark W. Woolrich

The brain recruits neuronal populations in a temporally coordinated manner in task and at rest. However, the extent to which large-scale networks exhibit their own organized temporal dynamics is unclear. We use an approach designed to find repeating network patterns in whole-brain resting fMRI data, where networks are defined as graphs of interacting brain areas. We find that the transitions between networks are nonrandom, with certain networks more likely to occur after others. Further, this nonrandom sequencing is itself hierarchically organized, revealing two distinct sets of networks, or metastates, that the brain has a tendency to cycle within. One metastate is associated with sensory and motor regions, and the other involves areas related to higher order cognition. Moreover, we find that the proportion of time that a subject spends in each brain network and metastate is a consistent subject-specific measure, is heritable, and shows a significant relationship with cognitive traits.


2016 ◽  
Vol 115 (3) ◽  
pp. 1521-1532 ◽  
Author(s):  
Konstantin I. Bakhurin ◽  
Victor Mac ◽  
Peyman Golshani ◽  
Sotiris C. Masmanidis

As the major input to the basal ganglia, the striatum is innervated by a wide range of other areas. Overlapping input from these regions is speculated to influence temporal correlations among striatal ensembles. However, the network dynamics among behaviorally related neural populations in the striatum has not been extensively studied. We used large-scale neural recordings to monitor activity from striatal ensembles in mice undergoing Pavlovian reward conditioning. A subpopulation of putative medium spiny projection neurons (MSNs) was found to discriminate between cues that predicted the delivery of a reward and cues that predicted no specific outcome. These cells were preferentially located in lateral subregions of the striatum. Discriminating MSNs were more spontaneously active and more correlated than their nondiscriminating counterparts. Furthermore, discriminating fast spiking interneurons (FSIs) represented a highly prevalent group in the recordings, which formed a strongly correlated network with discriminating MSNs. Spike time cross-correlation analysis showed the existence of synchronized activity among FSIs and feedforward inhibitory modulation of MSN spiking by FSIs. These findings suggest that populations of functionally specialized (cue-discriminating) striatal neurons have distinct network dynamics that sets them apart from nondiscriminating cells, potentially to facilitate accurate behavioral responding during associative reward learning.


2017 ◽  
Vol 118 (5) ◽  
pp. 2579-2591 ◽  
Author(s):  
Mahmood S. Hoseini ◽  
Jeff Pobst ◽  
Nathaniel Wright ◽  
Wesley Clawson ◽  
Woodrow Shew ◽  
...  

Bursts of oscillatory neural activity have been hypothesized to be a core mechanism by which remote brain regions can communicate. Such a hypothesis raises the question to what extent oscillations are coherent across spatially distant neural populations. To address this question, we obtained local field potential (LFP) and membrane potential recordings from the visual cortex of turtle in response to visual stimulation of the retina. The time-frequency analysis of these recordings revealed pronounced bursts of oscillatory neural activity and a large trial-to-trial variability in the spectral and temporal properties of the observed oscillations. First, local bursts of oscillations varied from trial to trial in both burst duration and peak frequency. Second, oscillations of a given recording site were not autocoherent; i.e., the phase did not progress linearly in time. Third, LFP oscillations at spatially separate locations within the visual cortex were more phase coherent in the presence of visual stimulation than during ongoing activity. In contrast, the membrane potential oscillations from pairs of simultaneously recorded pyramidal neurons showed smaller phase coherence, which did not change when switching from black screen to visual stimulation. In conclusion, neuronal oscillations at distant locations in visual cortex are coherent at the mesoscale of population activity, but coherence is largely absent at the microscale of the membrane potential of neurons. NEW & NOTEWORTHY Coherent oscillatory neural activity has long been hypothesized as a potential mechanism for communication across locations in the brain. In this study we confirm the existence of coherent oscillations at the mesoscale of integrated cortical population activity. However, at the microscopic level of neurons, we find no evidence for coherence among oscillatory membrane potential fluctuations. These results raise questions about the applicability of the communication through coherence hypothesis to the level of the membrane potential.


Sign in / Sign up

Export Citation Format

Share Document