scholarly journals Strong reduction of the chain rigidity of hyaluronan by selective binding of Ca2+ ions

2020 ◽  
Author(s):  
G. Giubertoni ◽  
A. Pérez de Alba Ortíz ◽  
F. Bano ◽  
X. Zhang ◽  
R.J. Linhardt ◽  
...  

ABSTRACTThe biological functions of natural polyelectrolytes are strongly influenced by the presence of ions, which bind to the polymer chains and thereby modify their properties. Although the biological impact of such modifications is well-recognized, a detailed molecular picture of the binding process and of the mechanisms that drive the subsequent structural changes in the polymer is lacking. Here, we study the molecular mechanism of the condensation of calcium, a divalent cation, on hyaluronan, a ubiquitous polymer in human tissues. By combining two-dimensional infrared spectroscopy experiments with molecular dynamics simulations, we find that calcium specifically binds to hyaluronan at millimolar concentrations. Because of its large size and charge, the calcium cation can bind simultaneously to the negatively charged carboxylate group and the amide group of adjacent saccharide units. Molecular dynamics simulations and single-chain force spectroscopy measurements provide evidence that the binding of the calcium ions weakens the intra-molecular hydrogen-bond network of hyaluronan, increasing the flexibility of the polymer chain. We also observe that the binding of calcium to hyaluronan saturates at a maximum binding fraction of ~10-15 mol %. This saturation indicates that the binding of Ca2+ strongly reduces the probability of subsequent binding of Ca2+ at neighboring binding sites, possibly as a result of enhanced conformational fluctuations and/or electrostatic repulsion effects. Our findings provide a detailed molecular picture of ion condensation, and reveal the severe effect of a few, selective and localized electrostatic interactions on the rigidity of a polyelectrolyte chain.TOC

Author(s):  
Asegun Henry ◽  
Gang Chen

We used molecular dynamics simulations to calculate the thermal conductivity of polyethylene chains, by employing the widely used Green-Kubo formula. The simulations use the AIREBO potential and employ periodic boundary conditions to mimic the dynamics of an infinite chain. In this limiting case, we observed that when the simulation domain is large enough the thermal conductivity diverges. The results suggest that single polymer chains intrinsically have high thermal conductivity. Although polymers are generally known to have low thermal conductivity, our observation of divergent thermal conductivity in a single chain suggests that high thermal conductivity polymer materials can be engineered, which would be of interest to a wide range of applications.


2002 ◽  
Vol 733 ◽  
Author(s):  
D. Shah ◽  
I. A. Bitsanis ◽  
U. Natarajan ◽  
E. Hackett ◽  
E.P. Giannelis

AbstractMolecular dynamics simulations were used to study the interlayer structure and dynamics of polystyrene (PS) and polystyrene-polyisoprene (PS-PI) block copolymers intercalated in organically modified layered silicates. In the case of PS the polymer chains displace the aliphatic surfactant chains and reside adjacent to the silicate layers. The electrostatic interactions between the aromatic rings on the PS chains and the silicate surface drive the intercalation of the polymer into the host galleries. PI, which lacks such electrostatic interactions, is immiscible (does not intercalate) with the host. There appears to be a minimum number of PS mers for intercalation of PS-PI copolymers to take place. The intercalated copolymer appears to structure inside the host galleries with the PS mers adjacent to the silicate layers and the corresponding PI away from the surface and towards the middle of the gallery. Using the mean square displacements we find that PS is the least mobile species in the galleries with the surfactant chains been the most mobile of all.


2021 ◽  
Author(s):  
Prithvi R. Pandey ◽  
Bartosz Różycki ◽  
Reinhard Lipowsky ◽  
Thomas R. Weikl

AbstractWe investigate the structural and orientational variability of the membrane-embedded T cell receptor (TCR) – CD3 complex in extensive atomistic molecular dynamics simulations based on the recent cryo-EM structure determined by Dong et al. (2019). We find that the TCR extracellular (EC) domain is highly variable in its orientation by attaining tilt angles relative to the membrane normal that range from 15° to 55°. The tilt angle of the TCR EC domain is both coupled to a rotation of the domain and to characteristic changes throughout the TCR – CD3 complex, in particular in the EC interactions of the Cβ FG loop of the TCR, as well as in the orientation of transmembrane helices. The concerted motions of the membrane-embedded TCR – CD3 complex revealed in our simulations provide atomistic insights for force-based models of TCR activation, which involve such structural changes in response to tilt-inducing forces on antigen-bound TCRs.


2019 ◽  
Vol 24 (9) ◽  
pp. 928-938 ◽  
Author(s):  
Luca Palazzolo ◽  
Chiara Paravicini ◽  
Tommaso Laurenzi ◽  
Sara Adobati ◽  
Simona Saporiti ◽  
...  

SLC6A14 (ATB0,+) is a sodium- and chloride-dependent neutral and dibasic amino acid transporter that regulates the distribution of amino acids across cell membranes. The transporter is overexpressed in many human cancers characterized by an increased demand for amino acids; as such, it was recently acknowledged as a novel target for cancer therapy. The knowledge on the molecular mechanism of SLC6A14 transport is still limited, but some elegant studies on related transporters report the involvement of the 12 transmembrane α-helices in the transport mechanism, and describe structural rearrangements mediated by electrostatic interactions with some pivotal gating residues. In the present work, we constructed a SLC6A14 model in outward-facing conformation via homology modeling and used molecular dynamics simulations to predict amino acid residues critical for substrate recognition and translocation. We docked the proteinogenic amino acids and other known substrates in the SLC6A14 binding site to study both gating regions and the exposed residues involved in transport. Interestingly, some of these residues correspond to those previously identified in other LeuT-fold transporters; however, we could also identify a novel relevant residue with such function. For the first time, by combined approaches of molecular docking and molecular dynamics simulations, we highlight the potential role of these residues in neutral amino acid transport. This novel information unravels new aspects of the human SLC6A14 structure–function relationship and may have important outcomes for cancer treatment through the design of novel inhibitors of SLC6A14-mediated transport.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1059
Author(s):  
Sanghun Lee ◽  
Curtis W. Frank ◽  
Do Y. Yoon

Molecular dynamics simulations of free-standing thin films of neat melts of polyethylene (PE) chains up to C150H302 and their binary mixtures with n-C13H28 are performed employing a united atom model. We estimate the surface tension values of PE melts from the atomic virial tensor over a range of temperatures, which are in good agreement with experimental results. Compared with short n-alkane systems, there is an enhanced surface segregation of methyl chain ends in longer PE chains. Moreover, the methyl groups become more segregated in the surface region with decreasing temperature, leading to the conclusion that the surface-segregation of methyl chain ends mainly arises from the enthalpic origin attributed to the lower cohesive energy density of terminal methyl groups. In the mixtures of two different chain lengths, the shorter chains are more likely to be found in the surface region, and this molecular segregation in moderately asymmetric mixtures in the chain length (C13H28 + C44H90) is dominated by the enthalpic effect of methyl chain ends. Such molecular segregation is further enhanced and dominated by the entropic effect of conformational constraints in the surface for the highly asymmetric mixtures containing long polymer chains (C13H28 + C150H3020). The estimated surface tension values of the mixtures are consistent with the observed molecular segregation characteristics. Despite this molecular segregation, the normalized density of methyl chain ends of the longer chain is more strongly enhanced, as compared with the all-segment density of the longer chain itself, in the surface region of melt mixtures. In addition, the molecular segregation results in higher order parameter of the shorter-chain segments at the surface and deeper persistence of surface-induced segmental order into the film for the longer chains, as compared with those in neat melt films.


2020 ◽  
Vol 22 (3) ◽  
pp. 1053-1060
Author(s):  
Kenji Mochizuki

Thermo-sensitive aqueous polymers undergo a coil-to-globule transition on heating, with drastic chemical and structural changes. We performed molecular dynamics simulations for PVCL in water to study the driving forces for the polymer's collapse.


Sign in / Sign up

Export Citation Format

Share Document