scholarly journals Impact of chronic transcranial Random-Noise Stimulation (tRNS) on prefrontal cortex excitation-inhibition balance in juvenile mice

2020 ◽  
Author(s):  
Carlos A. Sánchez-León ◽  
Álvaro Sánchez-López ◽  
María A. Gómez-Climent ◽  
Isabel Cordones ◽  
Roi Cohen Kadosh ◽  
...  

AbstractTranscranial random noise stimulation (tRNS), a non-invasive neuromodulatory technique capable of altering cortical activity, has been proposed to improve the signal-to-noise ratio at the neuronal level and the sensitivity of the neurons following an inverted U-function. The aim of this study was to examine the effects of tRNS on vGLUT1 and GAD 65-67 and its safety in terms of pathological changes. For that, juvenile mice were randomly distributed in three different groups: “tRNS 1x” receiving tRNS at the density current used in humans (0.3 A/m2, 20 min), “tRNS 100x” receiving tRNS at two orders of magnitude higher (30.0 A/m2, 20 min) and “sham” (0.3 A/m2, 15 s). Nine tRNS sessions during five weeks were administered to the prefrontal cortex of alert animals. No detectable tissue macroscopic lesions were observed after tRNS sessions. Post-stimulation immunohistochemical analysis of GAD 65-67 and vGLUT1 immunoreactivity showed a reduced GAD 65-67 immunoreactivity levels in the region directly beneath the electrode for tRNS 1x group with no significant effects in the tRNS 100x nor sham group. The observed results points to an excitatory effect associated with a decrease in GABA levels in absence of major histopathological alterations providing a novel mechanistic explanation for tRNS effects.

2018 ◽  
Author(s):  
Florian Herpich ◽  
Michael D Melnick ◽  
Sara Agosta ◽  
Krystel Huxlin ◽  
Duje Tadin ◽  
...  

Numerous behavioral studies have shown that visual function can improve with training, although perceptual refinements generally require weeks to months of training to attain. This, along with questions about long-term retention of learning, limits practical and clinical applications of many such paradigms. Here, we show for the first time that just 10 days of visual training coupled with transcranial random noise stimulation (tRNS) over visual areas causes dramatic improvements in visual motion perception. Relative to control conditions and anodal stimulation, tRNS-enhanced learning was at least twice as fast, and, crucially, it persisted for 6 months after the end of training and stimulation. Notably, tRNS also boosted learning in patients with chronic cortical blindness, leading to recovery of motion processing in the blind field after just 10 days of training, a period too short to elicit enhancements with training alone. In sum, our results reveal a remarkable enhancement of the capacity for long-lasting plastic and restorative changes when a neuromodulatory intervention is coupled with visual training.


2015 ◽  
Vol 8 (2) ◽  
pp. 319
Author(s):  
Rebecca Camilleri ◽  
Andrea Pavan ◽  
Antonella Veronese ◽  
Giuseppe Lo Giudice ◽  
Gianluca Campana

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Javier Peña ◽  
Agurne Sampedro ◽  
Naroa Ibarretxe-Bilbao ◽  
Leire Zubiaurre-Elorza ◽  
Aralar Aizpurua ◽  
...  

Abstract Creativity pervades many areas of everyday life and is considered highly relevant in several human living domains. Previous literature suggests that the posterior parietal cortex (PPC) is related to creativity. However, none of previous studies have compared the effect of transcranial random noise stimulation (tRNS) over bilateral PPC on both verbal and visual divergent thinking (DT) and Remote Associates Test (RAT) in the same experimental design. Forty healthy participants were randomly assigned to tRNS (100–500 Hz) over bilateral PPC or sham group, for 15 min and current was set at 1.5 mA. Participants’ creativity skills were assessed before and after brain stimulation with the Unusual Uses and the Picture Completion subtests from the Torrance Test of Creative Thinking and the RAT. ANCOVA (baseline scores as covariate) results indicated that tRNS group had significantly higher scores at post-test in RAT and visual originality compared to sham group. Unusual Uses, on the other hand, was not significant. Improvement in RAT suggests the involvement of PPC during via insight solution which may reflect internally directed attention that helps the recombination of remotely associated information. The improvement in visual originality dimension from DT may be due to a higher internally directed attention while reducing externally oriented attention.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Richard Donkor ◽  
Andrew E. Silva ◽  
Caroline Teske ◽  
Margaret Wallis-Duffy ◽  
Aaron P. Johnson ◽  
...  

AbstractWe tested the hypothesis that five daily sessions of visual cortex transcranial random noise stimulation would improve contrast sensitivity, crowded and uncrowded visual acuity in adults with amblyopia. Nineteen adults with amblyopia (44.2 ± 14.9 years, 10 female) were randomly allocated to active or sham tRNS of the visual cortex (active, n = 9; sham, n = 10). Sixteen participants completed the study (n = 8 per group). tRNS was delivered for 25 min across five consecutive days. Monocular contrast sensitivity, uncrowded and crowded visual acuity were measured before, during, 5 min and 30 min post stimulation on each day. Active tRNS significantly improved contrast sensitivity and uncrowded visual acuity for both amblyopic and fellow eyes whereas sham stimulation had no effect. An analysis of the day by day effects revealed large within session improvements on day 1 for the active group that waned across subsequent days. No long-lasting (multi-day) improvements were observed for contrast sensitivity, however a long-lasting improvement in amblyopic eye uncrowded visual acuity was observed for the active group. This improvement remained at 28 day follow up. However, between-group differences in baseline uncrowded visual acuity complicate the interpretation of this effect. No effect of tRNS was observed for amblyopic eye crowded visual acuity. In agreement with previous non-invasive brain stimulation studies using different techniques, tRNS induced short-term contrast sensitivity improvements in adult amblyopic eyes, however, repeated sessions of tRNS did not lead to enhanced or long-lasting effects for the majority of outcome measures.


2020 ◽  
Vol 24 (3) ◽  
pp. 113-118 ◽  
Author(s):  
Berthold Langguth

Tinnitus is a prevalent disorder that has no cure currently. Within the last two decades, neuroscientific research has facilitated a better understanding of the pathophysiological mechanisms that underlie the generation and maintenance of tinnitus, and the brain and nerves have been identified as potential targets for its treatment using non-invasive brain stimulation methods. This article reviews studies on tinnitus patients using transcranial magnetic stimulation, transcranial electrical stimulation, such as transcranial direct current stimulation, alternating current stimulation, transcranial random noise stimulation as well as transcutaneous vagus nerve stimulation and bimodal combined auditory and somatosensory stimulation. Although none of these approaches has demonstrated effects that would justify its use in routine treatment, the studies have provided important insights into tinnitus pathophysiology. Moreover bimodal stimulation, which has only been developed recently, has shown promising results in pilot trials and is a candidate for further development into a valuable treatment procedure.


Sign in / Sign up

Export Citation Format

Share Document