scholarly journals Visualizing and isolating iron-reducing microorganisms at single cell level

2020 ◽  
Author(s):  
Cuifen Gan ◽  
Rongrong Wu ◽  
Yeshen Luo ◽  
Jianhua Song ◽  
Dizhou Luo ◽  
...  

AbstractIron-reducing microorganisms (FeRM) play key roles in many natural and engineering processes. Visualizing and isolating FeRM from multispecies samples are essential to understand the in-situ location and geochemical role of FeRM. Here, we visualized FeRM by a “turn-on” Fe2+-specific fluorescent chemodosimeter (FSFC) with high sensitivity, selectivity and stability. This FSFC could selectively identify and locate active FeRM from either pure culture, co-culture of different bacteria or sediment-containing samples. Fluorescent intensity of the FSFC could be used as an indicator of Fe2+ concentration in bacterial cultures. By integrating FSFC with a single cell sorter, we obtained three FSFC-labeled cells from an enriched consortia and all of them were subsequently evidenced to be capable of iron-reduction and two unlabeled cells were evidenced to have no iron-reducing capability, further confirming the feasibility of the FSFC.ImportanceVisualization and isolation of FeRM from samples containing multispecies are commonly needed by researchers from different disciplines, such as environmental microbiology, environmental sciences and geochemistry. However, no available method has been reported. In this study, we provid a solution to visualize FeRM and evaluate their activity even at single cell level. Integrating with single cell sorter, FeRM can also be isolated from samples containing multispecies. This method can be used as a powerful tool to uncover the in-situ or ex-situ role of FeRM and their interactions with ambient microbes or chemicals.

Author(s):  
Cuifen Gan ◽  
Rongrong Wu ◽  
Yeshen Luo ◽  
Jianhua Song ◽  
Dizhou Luo ◽  
...  

Iron-reducing microorganisms (FeRM) play key roles in many natural and engineering processes. Visualizing and isolating FeRM from multispecies samples are essential to understand the in-situ location and geochemical role of FeRM. Here, we visualized FeRM by a “turn-on” Fe2+-specific fluorescent chemodosimeter (FSFC) with high sensitivity, selectivity and stability. This FSFC could selectively identify and locate active FeRM from either pure culture, co-culture of different bacteria or sediment-containing samples. Fluorescent intensity of the FSFC could be used as an indicator of Fe2+ concentration in bacterial cultures. By integrating FSFC with a single cell sorter, we obtained three FSFC-labeled cells from an enriched consortia and all of them were subsequently evidenced to be capable of iron-reduction and two unlabeled cells were evidenced to have no iron-reducing capability, further confirming the feasibility of the FSFC. IMPORTANCE Visualization and isolation of FeRM from samples containing multispecies are commonly needed by researchers from different disciplines, such as environmental microbiology, environmental sciences and geochemistry. However, no available method has been reported. In this study, we provide a solution to visualize FeRM and evaluate their activity even at single cell level. Integrating with single cell sorter, FeRM can also be isolated from samples containing multispecies. This method can be used as a powerful tool to uncover the in-situ or ex-situ role of FeRM and their interactions with ambient microbes or chemicals.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Konstantina Ioanna Sereti ◽  
Paniz Kamran Rashani ◽  
Peng Zhao ◽  
Reza Ardehali

It has been proposed that cardiac development in lower vertebrates is driven by the proliferation of cardiomyocytes. Similarly, cycling myocytes have been suggested to direct cardiac regeneration in neonatal mice after injury. Although, the role of cardiomyocyte proliferation in cardiac tissue generation during development has been well documented, the extent of this contribution as well as the role of other cell types, such as progenitor cells, still remains controversial. Here we used a novel stochastic four-color Cre-dependent reporter system (Rainbow) that allows labeling at a single cell level and retrospective analysis of the progeny. Cardiac progenitors expressing Mesp1 or Nkx2.5 were shown to be a source of cardiomyocytes during embryonic development while the onset of αMHC expression marked the developmental stage where the capacity of cardiac cells to proliferate diminishes significantly. Through direct clonal analysis we provide strong evidence supporting that cardiac progenitors, as opposed to mature cardiomyocytes, are the main source of cardiomyocytes during cardiac development. Moreover, we have identified quadri-, tri-, bi, and uni-potent progenitors that at a single cell level can generate cardiomyocytes, fibroblasts, endothelial and smooth muscle cells. Although existing cardiomyocytes undergo limited proliferation, our data indicates that it is mainly the progenitors that contribute to heart development. Furthermore, we show that the limited proliferation capacity of cardiomyocytes observed during normal development was enhanced following neonatal cardiac injury allowing almost complete regeneration of the scared tissue. However, this ability was largely absent in adult injured hearts. Detailed characterization of dividing cardiomyocytes and proliferating progenitors would greatly benefit the development of novel therapeutic options for cardiovascular diseases.


1998 ◽  
Vol 64 (4) ◽  
pp. 1536-1540 ◽  
Author(s):  
Katsuji Tani ◽  
Ken Kurokawa ◽  
Masao Nasu

ABSTRACT We applied HNPP (2-hydroxy-3-naphthoic acid-2′-phenylanilide phosphate) to direct in situ PCR for the routine detection of specific bacterial cells at the single-cell level. PCR was performed on glass slides with digoxigenin-labeled dUTP. The digoxigenin-labeled PCR products were detected with alkaline phosphatase-labeled antidigoxigenin antibody and HNPP which was combined with Fast Red TR. A bright red fluorescent signal was produced from conversion to HNP (dephosphorylated form) by alkaline phosphatase. We used the ECOL DNA primer set for amplification of ribosomal DNA of Escherichia coli to identify cells specifically at the single-cell level in a bacterial mixture. High-contrast images were obtained under an epifluorescence microscope with in situ PCR. By image analysis,E. coli cells in polluted river water also were detected.


2009 ◽  
Vol 76 (4) ◽  
pp. 1274-1277 ◽  
Author(s):  
Takehiko Kenzaka ◽  
Masao Nasu ◽  
Katsuji Tani

ABSTRACT The transfer range of phage genes was investigated at the single-cell level by using an in situ DNA amplification technique. After absorption of phages, a phage T4 gene was maintained in the genomes of non-plaque-forming bacteria at frequencies of 10−2 gene copies per cell. The gene transfer decreased the mutation frequencies in nonhost recipients.


2012 ◽  
Vol 84 (3) ◽  
pp. 1526-1532 ◽  
Author(s):  
Lingling Yang ◽  
Yingxing Zhou ◽  
Shaobin Zhu ◽  
Tianxun Huang ◽  
Lina Wu ◽  
...  

2021 ◽  
Author(s):  
Qiang Li ◽  
Zuwan Lin ◽  
Ren Liu ◽  
Xin Tang ◽  
Jiahao Huang ◽  
...  

AbstractPairwise mapping of single-cell gene expression and electrophysiology in intact three-dimensional (3D) tissues is crucial for studying electrogenic organs (e.g., brain and heart)1–5. Here, we introducein situelectro-sequencing (electro-seq), combining soft bioelectronics within situRNA sequencing to stably map millisecond-timescale cellular electrophysiology and simultaneously profile a large number of genes at single-cell level across 3D tissues. We appliedin situelectro-seq to 3D human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) patches, precisely registering the CM gene expression with electrophysiology at single-cell level, enabling multimodalin situanalysis. Such multimodal data integration substantially improved the dissection of cell types and the reconstruction of developmental trajectory from spatially heterogeneous tissues. Using machine learning (ML)-based cross-modal analysis,in situelectro-seq identified the gene-to-electrophysiology relationship over the time course of cardiac maturation. Further leveraging such a relationship to train a coupled autoencoder, we demonstrated the prediction of single-cell gene expression profile evolution using long-term electrical measurement from the same cardiac patch or 3D millimeter-scale cardiac organoids. As exemplified by cardiac tissue maturation,in situelectro-seq will be broadly applicable to create spatiotemporal multimodal maps and predictive models in electrogenic organs, allowing discovery of cell types and gene programs responsible for electrophysiological function and dysfunction.


2019 ◽  
Vol 10 (47) ◽  
pp. 10958-10962 ◽  
Author(s):  
Jing Han ◽  
Xi Huang ◽  
Huihui Liu ◽  
Jiyun Wang ◽  
Caiqiao Xiong ◽  
...  

A single-cell MS approach for multiplexed glycan detection to investigate the relationship between drug resistance and glycans at a single-cell level and quantify multiple glycans, overcoming the limit of low ionization efficiency of glycans.


Sign in / Sign up

Export Citation Format

Share Document