scholarly journals Understanding the compositional changes in LB Lennox medium during growth of Escherichia coli DH5α in a 1L bioreactor

2020 ◽  
Author(s):  
Wenfa Ng

AbstractCompositional changes in growth medium represents dynamic interplay between cell growth, biomass formation, and energy maintenance, with concomitant decrease in nutrients and increase in secreted metabolites and metabolic byproducts. Such information is important for quantifying microbial physiological response both at the population and cellular level, with respect to understanding subtle differences in microbial growth response, as well as supporting model building efforts in metabolic engineering. With the desire to understand molecular weight changes in components of LB Lennox medium as well as broth fractions present during cultivation of Escherichia coli DH5α (ATCC 53868) at 37 °C, 400 rpm stirring and 1 VVM aeration in a 1 L bioreactor, this study used a combination of gel filtration chromatography (GFC) and reversed phase high performance liquid chromatography (RP-HPLC) for determining changes to molecular weight of different fractions of the growth medium. Experiment results revealed the difficulty of fractionating the culture broth with RP-HPLC, where no distinct peaks of narrow retention time width were obtained. More importantly, the column used for GFC was unable to differentiate small molecular weight changes on the order of a few tens to few hundred Da through a refractive index detector. Together, GFC and RP-HPLC highlighted the difficulty of fractionating LB Lennox culture broth into different distinct fractions. Finally, the study validated the use of 194 nm as detection wavelength for visualizing the chromatogram of LB Lennox medium eluted from a C-18 reversed phase column during liquid chromatography. Collectively, GFC and RP-HPLC could not fractionate LB Lennox broth of E. coli DH5α into distinct fractions for further analysis by identification techniques such as mass spectrometry. Given the inherent complexity of complex medium such as LB Lennox, clean separation of the medium into every component with high purity may be impossible.Graphical abstractShort descriptionBroad elution profile and lack of distinct peaks in chromatogram of LB Lennox broth at 6 hours post inoculation with Escherichia coli DH5α (ATCC 53868), after attempted fractionation by C-18 reversed phase high performance liquid chromatography (RP-HPLC), revealed that separation could not be achieved with a complex mixture such as a microbiology broth. Specifically, while the objective of understanding compositional changes to culture medium during growth presents tremendous opportunities for determining the dynamic conversion of nutrients into metabolites and byproducts, difficulty of profiling all chemical constituents in a complex broth mixture meant that current model building efforts for metabolic engineering remains primitive with respect to the consortia of metabolic reactions occurring in situ at the cellular level.Subject areasbiotechnology, biochemistry, cell biology, microbiology, analytical chemistry

1985 ◽  
Vol 65 (2) ◽  
pp. 285-298 ◽  
Author(s):  
J. E. KRUGER ◽  
B. A. MARCHYLO

Chromatographic conditions were optimized and three commercially available columns were evaluated for separation of alcohol-soluble storage proteins of Neepawa wheat using reversed-phase high-performance liquid chromatography (RP-HPLC). Optimal separation was achieved using an extracting solution of 50% 1-propanol, 1% acetic acid, and 4% dithiothreitol and an HPLC elution time of 105 min at a flow rate of 1.0 mL/min. HPLC columns evaluated (SynChropak RP-P, Ultrapore RPSC and Aquapore RP-300) varied in selectivity and resolution. The column providing the greatest versatility was Aquapore RP-300 available in cartridge form. Sodium dodecyl sulfate gradient-gel electrophoresis analysis of protein peaks resolved by RP-HPLC indicated that many of the eluted peaks contained more than one protein species. Chromatographic protein patterns obtained for Neepawa wheat grown at different locations and in different years were qualitatively the same.Key words: Protein, high-performance liquid chromatography, wheat


2010 ◽  
Vol 2 (7) ◽  
pp. 142-147
Author(s):  
O. Amos Abolaji ◽  
M. Ubana Eteng ◽  
E. Patrick Ebong ◽  
Andi Brisibe ◽  
Ahmed Shakil ◽  
...  

Author(s):  
Muhammad Fawad Rasool ◽  
Umbreen Fatima Qureshi ◽  
Nazar Muhammad Ranjha ◽  
Imran Imran ◽  
Mouqadus Un Nisa ◽  
...  

AbstractTh accurate rapid, simple and selective reversed phase high performance liquid chromatography (RP-HPLC) has been established and validated for the determination of captopril (CAP). Chromatographic separation was accomplished using prepacked ODSI C18 column (250 mm × 4.6 mm with 5 μm particle size) in isocratic mode, with mobile phase consisting of water: acetonitrile (60:40 v/v), pH adjusted to 2.5 by using 85% orthophosphoric acid at a flow rate of 1 mL/min and UV detection was performed at 203 nm. RP-HPLC method used for the analysis of CAP in mobile phase and rabbit plasma was established and validated as per ICH-guidelines. It was carried out on a well-defined chromatographic peak of CAP was established with a retention time of 4.9 min and tailing factor of 1.871. The liquid–liquid extraction method was used for extraction of CAP from the plasma. Excellent linearity (R2 = 0.999) was shown over range 3.125–100 µg/mL with mean percentage recoveries ranges from 97 to 100.6%. Parameters of precision and accuracy of the developed method meet the established criteria. Intra and inter-day precision (% relative standard deviation) study was also performed which was less than 2% which indicate good reproducibility of the method. The limit of detection (LOD) and quantification for the CAP in plasma were 3.10 and 9.13 ng/mL respectively. The method was suitably validated and successfully applied to the determination of CAP in rabbit plasma samples.


Author(s):  
PULAGURTHA BHASKARARAO ◽  
GOWRI SANKAR DANNANA

Objective: Noscof tablet is a fixed dosage combination formulation having diphenhydramine (DH), ephedrine (ED), noscapine (NP), and glycerol glycolate (GG). A sensitive, selective, accurate, precise, and stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) method with photodiode array detection has been developed and validated for simultaneous analysis of DH, ED, NP, and GG in bulk drug and Noscof tablets. Methods: Reversed-phase chromatographic separation and analysis of DH, ED, NP, and GG were done on an Altima C18 column with 0.01 M KH2PO4 buffer (pH 3.5) and acetonitrile (50:50%, v/v) as mobile phase at 0.8 ml/min flow rate in isocratic mode. Detection was performed at 260 nm. The method was validated in harmony with International Conference on Harmonization (ICH) guidelines. The tablet sample solution was subjected to diverse stress conditions using ICH strategy such as hydrolytic degradation (neutral - with distilled water, alkaline - with 2 N NaOH, and acidic - with 2 N HCl), oxidation (with 10% H2O2), photodegradation (exposing to UV light), and dry heat degradation (exposing to 105°C). Results: Using the above stated chromatographic conditions, sharp peaks were obtained for ED, NP, DH, and GG with retention time of 3.272 min, 4.098 min, 5.467 min, and 6.783 min, respectively. Good regression coefficient values were obtained in the range of 2–12 μg/ml for ED, 3.75–22.5 μg/ml for NP, 3.125–18.75 μg/ml for DH, and 25–150 μg/ml for GG. The quantification limits were 0.181 μg/ml, 0.187 μg/ml, 0.246 μg/ml, and 1.114 μg/ml for ED, NP, DH, and GG, respectively. The values of validation parameters are within the acceptance limits given by ICH. The ED, NP, DH, and GG showed more percent of degradation in acid condition and less percent of degradation in the neutral condition. The peaks of degradants did not interfere with the peaks of analytes. ED, NP, DH, and GG were assessed with a good percentage of the assay (near to 100%) and low percent relative standard deviation (<2%) in Noscof tablets using the proposed method. Conclusion: The stability indicating RP-HPLC method developed was suitable for quantifying ED, NP, DH, and GG simultaneously in bulk as well as in tablet formulation.


Foods ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 28
Author(s):  
Michele D’Ambrosio

Glycosidic aroma precursors (GAPs) contribute to the varietal flavor of wine. Researchers have applied various sample preparation and analytical methods in attempts to achieve their separation and identification. However, mass spectrometric methods still fail to unequivocally define their structures. We have previously reported the separation of GAPs in their natural form and elucidated their structures by nuclear magnetic resonance (NMR) spectroscopy. In this study, we confirm the effectiveness of our established procedure and present methodological improvements. Grape juice was treated with lead (II) acetate and repeatedly chromatographed to give seven pure GAPs. Their chemical structures were characterized by MSn fragmentations and 1D- and 2D-NMR spectra. Ten GAPs were analyzed by both hydrophilic interaction liquid chromatography (HILIC) and reversed phase high performance liquid chromatography (RP-HPLC) to compare the two chromatograms. A selection of known phenols was treated with lead (II) acetate in order to check its binding properties.


Sign in / Sign up

Export Citation Format

Share Document