scholarly journals The quantitative landscape of the neutralizing antibody response to SARS-CoV-2

Author(s):  
Pranesh Padmanabhan ◽  
Rajat Desikan ◽  
Narendra M Dixit

Neutralizing antibodies (NAbs) appear promising interventions against SARS-CoV-2 infection. Over 100 NAbs have been identified so far and several are in clinical trials. Yet, which NAbs would be the most potent remains unclear. Here, we analysed reported in vitro dose-response curves (DRCs) of >70 NAbs and estimated corresponding 50% inhibitory concentrations, slope parameters, and instantaneous inhibitory potentials (IIPs), presenting a comprehensive quantitative landscape of NAb responses to SARS-CoV-2. NAbs with high IIPs are likely to be potent. To assess the applicability of the landscape in vivo, we analysed available DRCs of NAbs from individual patients and found that the responses closely resembled the landscape. Further, we created virtual patient plasma samples by randomly sampling NAbs from the landscape and found that they recapitulated plasma dilution assays from convalescent patients. The landscape thus offers a facile tool for benchmarking NAbs and would aid the development of NAb-based therapies for SARS-CoV-2 infection.

Author(s):  
Shensheng Zhao ◽  
Sebastiaan Wesseling ◽  
Bert Spenkelink ◽  
Ivonne M. C. M. Rietjens

AbstractThe present study predicts in vivo human and rat red blood cell (RBC) acetylcholinesterase (AChE) inhibition upon diazinon (DZN) exposure using physiological based kinetic (PBK) modelling-facilitated reverse dosimetry. Due to the fact that both DZN and its oxon metabolite diazoxon (DZO) can inhibit AChE, a toxic equivalency factor (TEF) was included in the PBK model to combine the effect of DZN and DZO when predicting in vivo AChE inhibition. The PBK models were defined based on kinetic constants derived from in vitro incubations with liver fractions or plasma of rat and human, and were used to translate in vitro concentration–response curves for AChE inhibition obtained in the current study to predicted in vivo dose–response curves. The predicted dose–response curves for rat matched available in vivo data on AChE inhibition, and the benchmark dose lower confidence limits for 10% inhibition (BMDL10 values) were in line with the reported BMDL10 values. Humans were predicted to be 6-fold more sensitive than rats in terms of AChE inhibition, mainly because of inter-species differences in toxicokinetics. It is concluded that the TEF-coded DZN PBK model combined with quantitative in vitro to in vivo extrapolation (QIVIVE) provides an adequate approach to predict RBC AChE inhibition upon acute oral DZN exposure, and can provide an alternative testing strategy for derivation of a point of departure (POD) in risk assessment.


2021 ◽  
Author(s):  
Pranesh Padmanabhan ◽  
Rajat Desikan ◽  
Narendra M Dixit

Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines work predominantly by eliciting neutralizing antibodies (NAbs), how the protection they confer depends on the NAb response to vaccination is unclear. Here, we collated and analysed in vitro dose-response curves of >70 NAbs and constructed a landscape defining the spectrum of neutralization efficiencies of NAbs elicited. We mimicked responses of individuals by sampling NAb subsets of known sizes from the landscape and found that they recapitulated responses of convalescent patients. Combining individual responses with a mathematical model of within-host SARS-CoV-2 infection post-vaccination, we predicted how the population-level protection conferred would increase with the NAb response to vaccination. Our predictions captured the outcomes of vaccination trials. Our formalism may help optimize vaccination protocols, given limited vaccine availability.


1988 ◽  
Vol 65 (5) ◽  
pp. 1944-1949 ◽  
Author(s):  
P. J. Antol ◽  
S. J. Gunst ◽  
R. E. Hyatt

Tachyphylaxis to aerosolized histamine was studied in dogs anesthetized with thiamylal after pretreatment with prostaglandin synthesis inhibitors. Three consecutive histamine dose-response curves were obtained in nine dogs pretreated with 5 mg/kg indomethacin; two of these nine were also pretreated with 10 mg/kg indomethacin. Seven of the nine dogs were pretreated with 4 mg/kg sodium meclofenamate; four of these seven were also pretreated with 12 mg/kg. All dogs had tachyphylaxis at high concentrations of histamine regardless of inhibitor used. Pretreatment with indomethacin while the dogs were under alpha-chloralose-urethan anesthesia gave similar results. Histamine tachyphylaxis was also studied both in the presence and in the absence of indomethacin in tracheal smooth muscle strips obtained from seven additional dogs. A decrease in the median effective dose to histamine was observed in the indomethacin-treated strips, but tachyphylaxis to histamine remained. We conclude that prostaglandin synthesis inhibition does not reverse histamine tachyphylaxis either in vivo or in vitro. Thus the mechanism of histamine tachyphylaxis remains unexplained.


1987 ◽  
Vol 253 (4) ◽  
pp. G497-G501 ◽  
Author(s):  
R. Leth ◽  
B. Elander ◽  
U. Haglund ◽  
L. Olbe ◽  
E. Fellenius

The histamine H2-receptor on the human parietal cell has been characterized by using dose-response curves and the negative logarithm of the molar concentration of an antagonist (pA2) analyses of cimetidine antagonism of betazole, histamine, and impromidine stimulation in isolated human and rabbit gastric glands. To evaluate the in vitro results, betazole-stimulated gastric acid secretion with and without cimetidine was also studied in healthy subjects. In the in vivo model, individual dose-response curves were shifted to the right with increasing cimetidine concentrations, but this was counteracted by increasing betazole doses, indicating competitive, reversible antagonism. The pA2 values ranged from 6.1 to 6.3. In isolated human gastric glands, impromidine was shown to be eight times more potent than histamine, indicating higher receptor affinity, but the maximally stimulated aminopyrine accumulation was the same as for histamine, and the pA2 values for cimetidine antagonism did not differ significantly, i.e., 5.7 (histamine) and 6.1 (impromidine). In isolated rabbit gastric glands, cimetidine inhibited the histamine- and impromidine-stimulated response with pA2 values of 6.0 and 7.3, respectively. Impromidine was shown to be approximately 100 times more potent than in human gastric glands, whereas histamine had the same potency. This confirms the role of the histamine H2-receptor and suggests a difference between the species concerning receptor affinity.


2018 ◽  
Vol 115 (24) ◽  
pp. 6273-6278 ◽  
Author(s):  
Ilona Baraniak ◽  
Barbara Kropff ◽  
Lyn Ambrose ◽  
Megan McIntosh ◽  
Gary R. McLean ◽  
...  

Human cytomegalovirus (HCMV) is an important pathogen in transplant patients and in congenital infection. Previously, we demonstrated that vaccination with a recombinant viral glycoprotein B (gB)/MF59 adjuvant formulation before solid organ transplant reduced viral load parameters post transplant. Reduced posttransplant viremia was directly correlated with antibody titers against gB consistent with a humoral response against gB being important. Here we show that sera from the vaccinated seronegative patients displayed little evidence of a neutralizing antibody response against cell-free HCMV in vitro. Additionally, sera from seronegative vaccine recipients had minimal effect on the replication of a strain of HCMV engineered to be cell-associated in a viral spread assay. Furthermore, although natural infection can induce antibody-dependent cellular cytotoxicity (ADCC) responses, serological analysis of seronegative vaccinees again presented no evidence of a substantial ADCC-promoting antibody response being generated de novo. Finally, analyses for responses against major antigenic domains of gB following vaccination were variable, and their pattern was distinct compared with natural infection. Taken together, these data argue that the protective effect elicited by the gB vaccine is via a mechanism of action in seronegative vaccinees that cannot be explained by neutralization or the induction of ADCC. More generally, these data, which are derived from a human challenge model that demonstrated that the gB vaccine is protective, highlight the need for more sophisticated analyses of new HCMV vaccines over and above the quantification of an ability to induce potent neutralizing antibody responses in vitro.


1983 ◽  
Vol 244 (6) ◽  
pp. G623-G629
Author(s):  
G. Adler ◽  
G. Gerhards ◽  
J. Schick ◽  
G. Rohr ◽  
H. F. Kern

Peptide and cholinergic secretagogues both produce biphasic dose-response curves for pancreatic enzyme secretion in vitro: supraoptimal doses result in submaximal secretory responses. We compared the effects of maximal and supramaximal doses of a cholinergic agent (carbachol) on rat exocrine pancreas in vivo. In conscious rats, volume and enzyme output were measured from the cannulated pancreatic duct during infusion of carbachol for 3 h. Infusion of 5 X 10(-7) mol . kg-1 . h-1 carbachol caused optimal stimulation, whereas a supraoptimal dose (5 X 10(-6) mol . kg-1 . h-1) resulted in submaximal response. Similar results were achieved when discharge of amylase and protein synthesis was determined in vitro after carbachol in vivo. Supraoptimal doses of carbachol increased serum amylase and enhanced acinar cell lysosomal activity in the Golgi area. The latter appeared to induce fusion of zymogen granules, which resulted in cytoplasmic vacuoles. The in vivo results corroborate in vitro findings of a biphasic dose-response relationship for carbachol and demonstrate destructive effects of supraoptimal concentrations on target cells.


2017 ◽  
Author(s):  
Andrew K. Smith ◽  
Yanli Xu ◽  
Glen E.P. Ropella ◽  
C. Anthony Hunt

AbstractAn improved understanding of in vivo-to-in vitro hepatocyte changes is crucial to interpreting in vitro data correctly and further improving hepatocyte-based in vitro-to-in vivo extrapolations to human targets. We demonstrate using virtual experiments as a means to help untangle plausible causes of inaccurate extrapolations. We start with virtual mice that have biomimetic software livers. Earlier, using those mice, we discovered model mechanisms that enabled achieving quantitative validation targets while also providing plausible causal explanations for temporal characteristics of acetaminophen hepatotoxicity. We isolated virtual hepatocytes, created a virtual culture, and then conducted dose-response experiments in both culture and mice. We expected the two dose-response curves to be displaced. We were surprised that they crossed because it evidenced that simulated acetaminophen metabolism and toxicity are different for virtual culture and mouse contexts even though individual hepatocyte mechanisms were unchanged. Crossing dose-response curves is a virtual example of an in vivo-to-in vitro disconnect. We use detailed results of experiments to explain the disconnect. Individual hepatocytes contribute differently to system level phenomena. In liver, hepatocytes are exposed to acetaminophen sequentially. Relative production of the reactive acetaminophen metabolite is largest (smallest) in pericentral (periportal) hepatocytes. Because that sequential exposure is absent in culture, hepatocytes from different lobular locations do not respond the same. A virtual Culture-to-Mouse translation can stand as a scientifically challengeable theory explaining an in vitro-in vivo disconnect. It provides a framework to develop more reliable interpretations of in vitro observations, which then may be used to improve extrapolations.AbbreviationsaHPCanalog hepatocyteAPAPacetaminophenCVCentral VeinSSsinusoidal segmentNAPQIN-acetyl-p-benzoquinone iminemitoDmitochondrial damage productsnonMDnon-mitochondrial damage products


1999 ◽  
Vol 277 (1) ◽  
pp. H1-H7 ◽  
Author(s):  
Johannes Bauer ◽  
Cécile Dau ◽  
Alessandro Cavarape ◽  
Franz Schaefer ◽  
Heimo Ehmke ◽  
...  

Studies in vitro have demonstrated that vasoconstrictor agents increase intracellular Ca2+ and activate protein kinase C (PKC) to elevate vascular tone. The aim of the present study was to determine the importance of these signaling pathways for angiotensin II (ANG II) and thromboxane A2(TxA2) in regulating mesenteric blood flow (MBF) in vivo. In anesthetized rats increasing doses of ANG II or the TxA2 agonist U-46619 were administered into the superior mesenteric artery to reduce MBF. Intra-arterial infusion of inhibitors served to examine the contribution of different pathways: 8-(diethylamino)octyl 3,4,5-trimethoxybenoate hydrochloride (TMB-8) to inhibit intracellular Ca2+ release, nifedipine to block transmembrane Ca2+ influx through the L-type Ca2+ channel, and staurosporine to inhibit PKC. Each of the inhibitors attenuated ANG II-induced reductions in MBF, and all dose-response curves were shifted to the right to an approximately threefold higher ANG II dose. Combinations of the inhibitors revealed that their effects were additive; together they abolished the vasoconstrictor action of ANG II completely. In contrast, the dose-response curve for U-46619 was not affected by any of the inhibitors infused either separately or together. The results demonstrate that a rise in intracellular Ca2+ and activation of PKC are major mediators of the vasoconstrictor effect of ANG II in mesenteric circulation, but they play a subordinate role, if any, for the effects of TxA2. Because TxA2 plays a major role only under pathological conditions, the uncontrolled vasoconstriction appears to be associated with the recruitment of novel signal transduction pathways.


1950 ◽  
Vol 91 (1) ◽  
pp. 65-86 ◽  
Author(s):  
Duard L. Walker ◽  
Frank L. Horsfall

There is an exponential linear relationship between the quantity of influenza virus neutralized and the quantity of immune serum employed in in ovo neutralization. The slope of the neutralization line is extremely steep. The concentration of neutralizing antibody can be measured with considerable precision in ovo if the constant virus-varying serum technique is utilized. The amounts of hemagglutination-inhibiting and neutralizing antibodies which are absorbed by a given quantity of influenza virus (PR8) were found to be predictable and the degree of reactivity of these two antibodies was shown to be directly related to the extent of immunization. It was demonstrated that there are marked discrepancies in correlation between antibody titers obtained by in vitro hemagglutination-inhibition and in vivo neutralization techniques and that neutralizing antibody is preferentially absorbed by a given quantity of virus. Inasmuch as the results were found not to be attributable to peculiarities of the techniques employed, it appears that the antibodies measured by hemagglutination-inhibition in vitro and by neutralization in vivo are not identical.


1964 ◽  
Vol 42 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Frank S. LaBella

The influence of synthetic oxytocin and synthetic lysine-8-vasopressin on the release of thyrotrophin (TSH) from slices of the "basophilic" zone of bovine anterior pituitary glands was determined. Up to 10-fold stimulation of TSH release occurred in the presence of the peptide hormones at low concentrations (approximately 10−11 to 10−9 M). Concentrations greater than 10−9 M were less stimulatory, ineffective, or inhibitory. In general, vasopressin stimulated at lower concentrations than did oxytocin. The dose–response curve of oxytocin began to descend at lower concentrations than did that of vasopressin.Stimulation of I131 discharge from the thyroids of propylthiouracil (PTU)-treated, day-old chicks was produced by the intraperitoneal injection of as little as 4 ng vasopressin or 25 ng oxytocin. As the injected dose of either peptide was increased beyond an optimal level, there was less enhancement of I131 discharge, and, with further increases, inhibition. The decreasing response began with lower doses of oxytocin than of vasopressin. The similarities of the dose–response curves of thyroid I131 discharge and of in vitro release of TSH indicate that the in vivo effects of injected neurohypophysial peptides are mediated through the release of endogenous TSH.


Sign in / Sign up

Export Citation Format

Share Document