scholarly journals DAF-18/PTEN inhibits germline zygotic gene activation during primordial germ cell quiescence

2020 ◽  
Author(s):  
Amanda L. Fry ◽  
Amy Webster ◽  
Rojin Chitrakar ◽  
L. Ryan Baugh ◽  
E. Jane Albert Hubbard

AbstractQuiescence, an actively-maintained reversible state of cell cycle arrest, is not well understood. PTEN is one of the most frequently lost tumor suppressors in human cancers and regulates quiescence of stem cells and cancer cells. In C. elegans mutant for daf-18, the sole C. elegans PTEN ortholog, primordial germ cells (PGCs) divide inappropriately in starvation conditions, in a TOR-dependent manner. Here, we further investigated the role of daf-18 in maintaining PGC quiescence. We found that maternal or zygotic daf-18 is sufficient to maintain cell cycle quiescence, that daf-18 acts in the germ line and soma, and that daf-18 affects timing of PGC divisions in fed animals. Importantly, our results also implicate daf-18 in zygotic germline gene activation, though not in germline fate specification. However, TOR is less important to zygotic germline gene expression, suggesting that in the absence of food daf-18/PTEN prevents inappropriate germline zygotic gene activation and cell division by distinct mechanisms.

PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009650
Author(s):  
Amanda L. Fry ◽  
Amy K. Webster ◽  
Julia Burnett ◽  
Rojin Chitrakar ◽  
L. Ryan Baugh ◽  
...  

Quiescence, an actively-maintained reversible state of cell cycle arrest, is not well understood. PTEN is one of the most frequently lost tumor suppressors in human cancers and regulates quiescence of stem cells and cancer cells. The sole PTEN ortholog in Caenorhabditis elegans is daf-18. In a C. elegans loss-of-function mutant for daf-18, primordial germ cells (PGCs) divide inappropriately in L1 larvae hatched into starvation conditions, in a TOR-dependent manner. Here, we further investigated the role of daf-18 in maintaining PGC quiescence in L1 starvation. We found that maternal or zygotic daf-18 is sufficient to maintain cell cycle quiescence, that daf-18 acts in the germ line and soma, and that daf-18 affects timing of PGC divisions in fed animals. Importantly, our results also implicate daf-18 in repression of germline zygotic gene activation, though not in germline fate specification. However, TOR is less important to germline zygotic gene expression, suggesting that in the absence of food, daf-18/PTEN prevents inappropriate germline zygotic gene activation and cell division by distinct mechanisms.


Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 2961-2972 ◽  
Author(s):  
S. Strome ◽  
P. Martin ◽  
E. Schierenberg ◽  
J. Paulsen

Mutations in the maternal-effect sterile gene mes-1 cause the offspring of homozygous mutant mothers to develop into sterile adults. Lineage analysis revealed that mutant offspring are sterile because they fail to form primordial germ cells during embryogenesis. In wild-type embryos, the primordial germ cell P4 is generated via a series of four unequal stem-cell divisions of the zygote. mes-1 embryos display a premature and progressive loss of polarity in these divisions: P0 and P1 undergo apparently normal unequal divisions and cytoplasmic partitioning, but P2 (in some embryos) and P3 (in most embryos) display defects in cleavage asymmetry and fail to partition lineage-specific components to only one daughter cell. As an apparent consequence of these defects, P4 is transformed into a muscle precursor, like its somatic sister cell D, and generates up to 20 body muscle cells instead of germ cells. Our results show that the wild-type mes-1 gene participates in promoting unequal germ-line divisions and asymmetric partitioning events and thus the determination of cell fate in early C. elegans embryos.


2017 ◽  
Author(s):  
Eugénie Goupil ◽  
Rana Amini ◽  
Jean-Claude Labbé

ABSTRACTStable cytoplasmic bridges arise from failed cytokinesis, the last step of cell division, and are a key feature of syncytial architectures in the germ line of most metazoans. Whereas the C. elegans germ line is syncytial, its formation remains poorly understood. We studied the role of ANI-2, a noncanonical and shorter form of the actomyosin scaffold protein anillin that is expressed specifically during embryogenesis in the germ line precursor blastomere, P4. We found that the P4 blastomere does not complete abscission following cytokinesis, leaving a stable cytoplasmic bridge between the two daughter cells. Interestingly, depletion of ANI-2 results in a regression of the membrane partition between the two cells, indicating that ANI-2 is required to stabilize the cytoplasmic bridge. We identified several contractility regulators that, like ANI-2, localize to the cytoplasmic bridge and are required to stabilize it. Epistatic analysis of these regulators’ mutual dependencies revealed a pathway in which Rho regulators promote ANI-2 accumulation at the stable cytoplasmic bridge, which in turns promotes the accumulation of the non-muscle myosin II NMY-2 and the midbody component CYK-7 at the bridge, in part by limiting the accumulation of canonical anillin ANI-1. Our results uncover key steps in C. elegans germ line formation and define a set of conserved regulators that ensure the proper stability of the primordial germ cell cytoplasmic bridge during embryonic development.


2018 ◽  
Vol 115 (29) ◽  
pp. E6780-E6788 ◽  
Author(s):  
Ken-ichiro Abe ◽  
Satoshi Funaya ◽  
Dai Tsukioka ◽  
Machika Kawamura ◽  
Yutaka Suzuki ◽  
...  

In mice, transcription initiates at the mid-one-cell stage and transcriptional activity dramatically increases during the two-cell stage, a process called zygotic gene activation (ZGA). Associated with ZGA is a marked change in the pattern of gene expression that occurs after the second round of DNA replication. To distinguish ZGA before and after the second-round DNA replication, the former and latter are called minor and major ZGA, respectively. Although major ZGA are required for development beyond the two-cell stage, the function of minor ZGA is not well understood. Transiently inhibiting minor ZGA with 5, 6-dichloro-1-β-d-ribofuranosyl-benzimidazole (DRB) resulted in the majority of embryos arresting at the two-cell stage and retention of the H3K4me3 mark that normally decreases. After release from DRB, at which time major ZGA normally occurred, transcription initiated with characteristics of minor ZGA but not major ZGA, although degradation of maternal mRNA normally occurred. Thus, ZGA occurs sequentially starting with minor ZGA that is critical for the maternal-to-zygotic transition.


2009 ◽  
Vol 21 (1) ◽  
pp. 112
Author(s):  
I. Choi ◽  
K. H. S. Campbell

After fertilization, early embryo development is dependent upon maternally inherited proteins and protein synthesised from maternal mRNA until zygotic gene activation (ZGA) occurs. The transition of transcriptional activity from maternal to embryonic control occurs with the activation of rRNA genes and the formation of the nucleolus at the 8- to 16-cell stage that coincides with a prolonged fourth cell cycle in bovine and ovine embryos. However, previous studies have reported a shift in the longest cell cycle (fifth cell cycle) in bovine somatic cell nuclear transfer (SCNT) embryos, suggesting that the major genome activation is delayed, possibly due to incomplete changes in chromatin structure such as hypermethylation and hypoacetylation of histone (Memili and First 2000 Zygote 8, 87–96; Holm et al. 2003 Cloning Stem Cells 5, 133–142). Although global gene expression profile studies have been carried out in somatic cell nuclear transfer embryos, little is known about the expression of genes which can alter chromatin structure in early embryo development and possibly effect ZGA. To determine whether epigenetic reprogramming of donor nuclei affected ZGA and expression profiles in SCNT embryos, ZBTB33 (zinc finger and BTB domain containing 33, also known as kaiso, a methy-CpG specific repressor), BRG1(brahma-related gene 1, SWI/SNF family of the ATP-dependent chromatin remodeling complexes), JMJD1A (jumonji domain containing 1A, H3K9me2/1-specific demethylase), JMJD1C (putative H3K9-specific demethylase), and JMJD2C (H3K9me3-specific demethylase) were examined by RT-PCR at different developmental stages [germinal vesicle (GV), metaphase II (MII), 8- to 16-cell, 16- to 32-cell, and blastocyst in both parthenogenetic and SCNT embryos]. All genes were detected in parthenogenetic and SCNT blastocyts, and ZBTB33 was also expressed in all embryos at all stages tested. However, the onset of expression of JMJD1C, containing POU5F1 binding site at 5′-promoter region and BRG1 required for ZGA are delayed in SCNT embryos as compared to parthenotes (16- v. 8-cell, and blastoocyst v. 16-cell stage). Furthermore, JMJD2C containing NANOG binding sites at the 3′-flanking region was expressed in GV and MII oocytes and parthenogenetic blastocysts, whereas in SCNT embryos, JMJD2C was only observed from the 16-cell stage onwards. Interestingly, JMJD1A, which is positively regulated by POU5F1, was not detected in GV and MII oocytes but was present in blastocyst stage embryos of both groups. Taken together, these results suggest that incomplete epigenetic modifications of genomic DNA and histones lead to a delayed onset of ZGA which may affect further development and establishment of totipotency. Subsequently, aberrant expression patterns reported previously in SCNT embryos may be attributed to improper expression of histone H3K9 and H3K4 demethylase genes during early embryo development.


2020 ◽  
Vol 21 (11) ◽  
pp. 4115 ◽  
Author(s):  
Isabel Gómez-Redondo ◽  
Priscila Ramos-Ibeas ◽  
Eva Pericuesta ◽  
Raúl Fernández-González ◽  
Ricardo Laguna-Barraza ◽  
...  

Minor splicing plays an important role in vertebrate development. Zrsr1 and Zrsr2 paralog genes have essential roles in alternative splicing, mainly participating in the recognition of minor (U12) introns. To further explore their roles during early embryo development, we produced Zrsr1mu and Zrsr2mu mutant mice, containing truncating mutations within the second zinc finger domain. Both homozygous mutant mice were viable with a normal lifespan. When we crossed a homozygous Zrsr2mu/mu female with Zrsr1mu/mu male, the double heterozygotes were non-viable, giving rise to embryos that stopped developing mainly between the 2- and 4-cell stages, just after zygotic gene activation. RNA-seq analysis of Zrsr1/2mu 2-cell embryos showed altered gene and isoform expression of thousands of genes enriched in gene ontology terms and biological pathways related to ribosome, RNA transport, spliceosome, and essential zygotic gene activation steps. Alternative splicing was analyzed, showing a significant increase in intron retention in both U2 and U12 intron-containing genes related to cell cycle and mitotic nuclear division. Remarkably, both Zrsr1 and Zrsr2 were required for the conversion of mouse-induced pluripotent stem cells into 2C-like cells. According to our results, Zrsr1 or Zrsr2 are necessary for ZGA and both are indispensable for the conversion of induced pluripotent stem cells into 2C-like cells.


Sign in / Sign up

Export Citation Format

Share Document