maternal to zygotic transition
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 52)

H-INDEX

34
(FIVE YEARS 7)

Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3592
Author(s):  
Yu Shi ◽  
Mingcheng Cai ◽  
Kun Du ◽  
Xue Bai ◽  
Lipeng Tang ◽  
...  

The control of pre-implantation development in mammals undergoes a maternal-to-zygotic transition (MZT) after fertilization. The transition involves maternal clearance and zygotic genome activation remodeling the terminal differentiated gamete to confer totipotency. In the study, we first determined the profile of long non-coding RNAs (lncRNAs) of mature rabbit oocyte, 2-cell, 4-cell, 8-cell, and morula embryos using RNA-seq. A total of 2673 known rabbit lncRNAs were identified. The lncRNAs exhibited dynamic expression patterns during pre-implantation development. Moreover, 107 differentially expressed lncRNAs (DE lncRNAs) were detected between mature oocyte and 2-cell embryo, while 419 DE lncRNAs were detected between 8-cell embryo and morula, consistent with the occurrence of minor and major zygotic genome activation (ZGA) wave of rabbit pre-implanted embryo. This study then predicted the potential target genes of DE lncRNAs based on the trans-regulation mechanism of lncRNAs. The GO and KEGG analyses showed that lncRNAs with stage-specific expression patterns promoted embryo cleavage and synchronic development by regulating gene transcription and translation, intracellular metabolism and organelle organization, and intercellular signaling transduction. The correlation analysis between mRNAs and lncRNAs identified that lncRNAs ENSOCUG00000034943 and ENSOCUG00000036338 may play a vital role in the late-period pre-implantation development by regulating ILF2 gene. This study also found that the sequential degradation of maternal lncRNAs occurred through maternal and zygotic pathways. Furthermore, the function analysis of the late-degraded lncRNAs suggested that these lncRNAs may play a role in the mRNA degradation in embryos via mRNA surveillance pathway. Therefore, this work provides a global view of known lncRNAs in rabbit pre-implantation development and highlights the role of lncRNAs in embryogenesis regulation.


2021 ◽  
Author(s):  
You Wu ◽  
Xiaocui Xu ◽  
Meijie Qi ◽  
Chuan Chen ◽  
Meiling Zhang ◽  
...  

N6-methyladenosine (m6A) and its regulatory components play critical roles in various developmental processes in mammals(1-5). However, the landscape and function of m6A in the maternal-to-zygotic transition (MZT) remain unclear due to limited materials. Here, by developing an ultralow-input MeRIP-seq method, we revealed the dynamics of the m6A RNA methylome during the MZT process in mice. We found that more than 1/3 maternal decay and 2/3 zygotic mRNAs were modified by m6A. Moreover, m6As are highly enriched in the RNA of transposable elements MTA and MERVL, which are highly expressed in oocytes and 2-cell embryos, respectively. Notably, maternal depletion of Kiaa1429, a component of the m6A methyltransferase complex, leads to a reduced abundance of m6A-marked maternal RNAs, including both genes and MTA, in GV oocytes, indicating m6A-dependent regulation of RNA stability in oocytes. Interestingly, when the writers were depleted, some m6A-marked 2-cell specific RNAs, including Zscan4 and MERVL, appeared normal at the 2-cell stage but failed to be decayed at later stages, suggesting that m6A regulates the clearance of these transcripts. Together, our study uncovered that m6As function in context-specific manners during MZT, which ensures the transcriptome stability of oocytes and regulates the stage specificity of zygotic transcripts after fertilization.


2021 ◽  
Author(s):  
Kent A Riemondy ◽  
Jesslyn C Henriksen ◽  
Olivia S Rissland

The maternal-to-zygotic transition (MZT) is a conserved embryonic process in animals where developmental control shifts from the maternal to zygotic genome. A key step in this transition is zygotic transcription, and deciphering the MZT requires classifying newly transcribed genes. However, due to current technological limitations, this starting point remains a challenge for studying many species. Here we present an alternative approach that characterizes transcriptome changes based solely on RNA-seq data. By combining intron-mapping reads and transcript-level quantification, we characterized transcriptome dynamics during the Drosophila melanogaster MZT. Our approach provides an accessible platform to investigate transcriptome dynamics that can be applied to the MZT in non-model organisms. In addition to classifying zygotically transcribed genes, our analysis revealed that over 300 genes express different maternal and zygotic transcript isoforms due to alternative splicing, polyadenylation, and promoter usage. The vast majority of these zygotic isoforms have the potential to be subject to different regulatory control, and over two-thirds encode different proteins. Thus, our analysis reveals an additional layer of regulation during the MZT, where new zygotic transcripts can generate additional proteome diversity.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Erin Chille ◽  
Emma Strand ◽  
Mayaan Neder ◽  
Valeria Schmidt ◽  
Madeleine Sherman ◽  
...  

Abstract Background Maternal mRNA provisioning of oocytes regulates early embryogenesis. Maternal transcripts are degraded as zygotic genome activation (ZGA) intensifies, a phenomenon known as the maternal-to-zygotic transition (MZT). Here, we examine gene expression over nine developmental stages in the Pacific rice coral, Montipora capitata, from eggs and embryos at 1, 4, 9, 14, 22, and 36 h-post-fertilization (hpf), as well as swimming larvae (9d), and adult colonies. Results Weighted Gene Coexpression Network Analysis revealed four expression peaks, identifying the maternal complement, two waves of the MZT, and adult expression. Gene ontology enrichment revealed maternal mRNAs are dominated by cell division, methylation, biosynthesis, metabolism, and protein/RNA processing and transport functions. The first MZT wave occurs from ~4-14 hpf and is enriched in terms related to biosynthesis, methylation, cell division, and transcription. In contrast, functional enrichment in the second MZT wave, or ZGA, from 22 hpf-9dpf, includes ion/peptide transport and cell signaling. Finally, adult expression is enriched for functions related to signaling, metabolism, and ion/peptide transport. Our proposed MZT timing is further supported by expression of enzymes involved in zygotic transcriptional repression (Kaiso) and activation (Sox2), which peak at 14 hpf and 22 hpf, respectively. Further, DNA methylation writing (DNMT3a) and removing (TET1) enzymes peak and remain stable past ~4 hpf, suggesting that methylome programming occurs before 4 hpf. Conclusions Our high-resolution insight into the coral maternal mRNA and MZT provides essential baseline information to understand parental carryover effects and the sensitivity of developmental success under increasing environmental stress.


2021 ◽  
Author(s):  
Roberto Feuda

AbstractIn this work, we used Nanostring N-counter technology, to evaluate the mRNA expression level of more than 330 regulatory genes over 34-time points covering the first three days of development of the sea urchin larvae. The hierarchical clustering of the mRNAs expression levels has identified groups corresponding to the major developmental landmarks (e.g., maternal to zygotic transition and gastrulation). Furthermore, comparison with previous experiments indicates high reproducibility of mRNA level temporal dynamics across batches. Finally, we generated an online tool to visualize gene expression during sea urchin larval development. The site can be accessed at https://nanostring2021.herokuapp.com/.


2021 ◽  
Author(s):  
Lorane Le Franc ◽  
Bruno Petton ◽  
Pascal Favrel ◽  
Guillaume Riviere

The N6-methylation of RNA adenosines (m6A) is an important regulator of gene expression with critical implications in vertebrate and insect development. However, the developmental significance of epitranscriptomes in lophotrochozoan organisms remains unknown. Using MeRIP-seq, we generated transcriptome-wide m6A-RNA methylomes covering the whole development of the oyster from oocytes to juveniles. Oyster RNA classes display specific m6A signatures, with mRNAs and lncRNAs exhibiting distinct profiles and being highly methylated compared to transposon transcripts. Epitranscriptomes are dynamic and correspond to chronological steps of development (cleavage, gastrulation, organogenesis and metamorphosis), with a minimal mRNA and lncRNA methylation at the morula stage followed by a global increase. mRNA m6A levels are correlated to transcript levels and shifts in methyladenine profiles correspond to expression kinetics. Differentially methylated transcripts cluster according to embryo-larval stages and bear the corresponding developmental functions (cell division, signal transduction, morphogenesis and cell differentiation). The m6A level of transposon transcripts is also regulated and peaks during the gastrulation. We demonstrate that m6A-RNA methylomes are dynamic and associated to gene expression regulation during oyster development. The putative epitranscriptome implication in the cleavage, maternal-to-zygotic transition and cell differentiation in a lophotrochozoan model brings new insights into the control and evolution of developmental processes.


2021 ◽  
Author(s):  
Shubhangini Kataruka ◽  
Veronika Kinterova ◽  
Filip Horvat ◽  
Jiri Kanka ◽  
Petr Svoboda

miRNAs, ~22nt small RNAs associated with Argonaute (AGO) proteins, are important negative regulators of gene expression in mammalian cells. However, mammalian maternal miRNAs show negligible repressive activity and the miRNA pathway is dispensable for oocytes and maternal-to-zygotic transition. The stoichiometric hypothesis proposed that this is caused by dilution of maternal miRNAs during oocyte growth. As the dilution affects miRNAs but not mRNAs, it creates unfavorable miRNA:mRNA stoichiometry for efficient repression of cognate mRNAs. Here we report that porcine ssc-miR-205 and bovine bta-miR-10b are exceptional miRNAs, which resist the diluting effect of oocyte growth and can efficiently suppress gene expression. Additional analysis of ssc-miR-205 shows that it has higher stability, reduces expression of endogenous targets, and contributes to porcine oocyte-to-embryo transition. Consistent with the stoichiometric hypothesis, our results show that the endogenous miRNA pathway in mammalian oocytes is intact and that maternal miRNAs can efficiently suppress gene expression when a favorable miRNA:mRNA stoichiometry is established.


Sign in / Sign up

Export Citation Format

Share Document