scholarly journals On Mendelian Randomization Mixed-Scale Treatment Effect Robust Identification (MR MiSTERI) and Estimation for Causal Inference

Author(s):  
Zhonghua Liu ◽  
Ting Ye ◽  
Baoluo Sun ◽  
Mary Schooling ◽  
Eric Tchetgen Tchetgen

AbstractBackgroundStandard Mendelian randomization analysis can produce biased results if the genetic variant defining the instrumental variable (IV) is confounded and/or has a horizontal pleiotropic effect on the outcome of interest not mediated by the treatment.DevelopmentWe provide novel identification conditions for the causal effect of a treatment in the presence of unmeasured confounding, by leveraging an invalid IV for which both the IV independence and exclusion restriction assumptions may be violated. The proposed Mendelian Randomization Mixed-Scale Treatment Effect Robust Identification (MR MiSTERI) approach relies on (i) an assumption that the treatment effect does not vary with the invalid IV on the additive scale; and (ii) that the selection bias due to confounding does not vary with the invalid IV on the odds ratio scale; and (iii) that the residual variance for the outcome is heteroscedastic and thus varies with the invalid IV. Although assumptions (i) and (ii) have, respectively appeared in the IV literature, assumption (iii) has not; we formally establish that their conjunction can identify a causal effect even with an invalid IV subject to pleiotropy. MR MiSTERI is shown to be particularly advantageous in the presence of pervasive heterogeneity of pleiotropic effects on additive scale, a setting in which two recently proposed robust estimation methods MR GxE and MR GENIUS can be severely biased. For estimation, we propose a simple and consistent three-stage estimator that can be used as preliminary estimator to a carefully constructed one-step-update estimator, which is guaranteed to be more efficient under the assumed model. In order to incorporate multiple, possibly correlated and weak IVs, a common challenge in MR studies, we develop a MAny Weak Invalid Instruments (MR MaWII MiSTERI) approach for strengthened identification and improved accuracy. We have developed an R package MR-MiSTERI for public use of all proposed methods.ApplicationWe illustrate MR MiSTERI in an application using UK Biobank data to evaluate the causal relationship between body mass index and glucose, thus obtaining inferences that are robust to unmeasured confounding, leveraging many weak and potentially invalid candidate genetic IVs.ConclusionMaWII MiSTERI is shown to be robust to horizontal pleiotropy, violation of IV independence assumption and weak IV bias. Both simulation studies and real data analysis results demonstrate the robustness of the proposed MR MiSTERI methods.

Author(s):  
Fernando Pires Hartwig ◽  
Kate Tilling ◽  
George Davey Smith ◽  
Deborah A Lawlor ◽  
Maria Carolina Borges

Abstract Background Two-sample Mendelian randomization (MR) allows the use of freely accessible summary association results from genome-wide association studies (GWAS) to estimate causal effects of modifiable exposures on outcomes. Some GWAS adjust for heritable covariables in an attempt to estimate direct effects of genetic variants on the trait of interest. One, both or neither of the exposure GWAS and outcome GWAS may have been adjusted for covariables. Methods We performed a simulation study comprising different scenarios that could motivate covariable adjustment in a GWAS and analysed real data to assess the influence of using covariable-adjusted summary association results in two-sample MR. Results In the absence of residual confounding between exposure and covariable, between exposure and outcome, and between covariable and outcome, using covariable-adjusted summary associations for two-sample MR eliminated bias due to horizontal pleiotropy. However, covariable adjustment led to bias in the presence of residual confounding (especially between the covariable and the outcome), even in the absence of horizontal pleiotropy (when the genetic variants would be valid instruments without covariable adjustment). In an analysis using real data from the Genetic Investigation of ANthropometric Traits (GIANT) consortium and UK Biobank, the causal effect estimate of waist circumference on blood pressure changed direction upon adjustment of waist circumference for body mass index. Conclusions Our findings indicate that using covariable-adjusted summary associations in MR should generally be avoided. When that is not possible, careful consideration of the causal relationships underlying the data (including potentially unmeasured confounders) is required to direct sensitivity analyses and interpret results with appropriate caution.


2021 ◽  
Vol 9 (1) ◽  
pp. 190-210
Author(s):  
Arvid Sjölander ◽  
Ola Hössjer

Abstract Unmeasured confounding is an important threat to the validity of observational studies. A common way to deal with unmeasured confounding is to compute bounds for the causal effect of interest, that is, a range of values that is guaranteed to include the true effect, given the observed data. Recently, bounds have been proposed that are based on sensitivity parameters, which quantify the degree of unmeasured confounding on the risk ratio scale. These bounds can be used to compute an E-value, that is, the degree of confounding required to explain away an observed association, on the risk ratio scale. We complement and extend this previous work by deriving analogous bounds, based on sensitivity parameters on the risk difference scale. We show that our bounds can also be used to compute an E-value, on the risk difference scale. We compare our novel bounds with previous bounds through a real data example and a simulation study.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuquan Wang ◽  
Tingting Li ◽  
Liwan Fu ◽  
Siqian Yang ◽  
Yue-Qing Hu

Mendelian randomization makes use of genetic variants as instrumental variables to eliminate the influence induced by unknown confounders on causal estimation in epidemiology studies. However, with the soaring genetic variants identified in genome-wide association studies, the pleiotropy, and linkage disequilibrium in genetic variants are unavoidable and may produce severe bias in causal inference. In this study, by modeling the pleiotropic effect as a normally distributed random effect, we propose a novel mixed-effects regression model-based method PLDMR, pleiotropy and linkage disequilibrium adaptive Mendelian randomization, which takes linkage disequilibrium into account and also corrects for the pleiotropic effect in causal effect estimation and statistical inference. We conduct voluminous simulation studies to evaluate the performance of the proposed and existing methods. Simulation results illustrate the validity and advantage of the novel method, especially in the case of linkage disequilibrium and directional pleiotropic effects, compared with other methods. In addition, by applying this novel method to the data on Atherosclerosis Risk in Communications Study, we conclude that body mass index has a significant causal effect on and thus might be a potential risk factor of systolic blood pressure. The novel method is implemented in R and the corresponding R code is provided for free download.


Author(s):  
Xiaofeng Zhu ◽  
Xiaoyin Li ◽  
Rong Xu ◽  
Tao Wang

Abstract Motivation The overall association evidence of a genetic variant with multiple traits can be evaluated by cross-phenotype association analysis using summary statistics from genome-wide association studies. Further dissecting the association pathways from a variant to multiple traits is important to understand the biological causal relationships among complex traits. Results Here, we introduce a flexible and computationally efficient Iterative Mendelian Randomization and Pleiotropy (IMRP) approach to simultaneously search for horizontal pleiotropic variants and estimate causal effect. Extensive simulations and real data applications suggest that IMRP has similar or better performance than existing Mendelian Randomization methods for both causal effect estimation and pleiotropic variant detection. The developed pleiotropy test is further extended to detect colocalization for multiple variants at a locus. IMRP will greatly facilitate our understanding of causal relationships underlying complex traits, in particular, when a large number of genetic instrumental variables are used for evaluating multiple traits. Availability and implementation The software IMRP is available at https://github.com/XiaofengZhuCase/IMRP. The simulation codes can be downloaded at http://hal.case.edu/∼xxz10/zhu-web/ under the link: MR Simulations software. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 19 (4) ◽  
pp. 224-231 ◽  
Author(s):  
He Zhuang ◽  
Ying Zhang ◽  
Shuo Yang ◽  
Liang Cheng ◽  
Shu-Lin Liu

Objective: Infant length (IL) is a positively associated phenotype of type 2 diabetes mellitus (T2DM), but the causal relationship of which is still unclear. Here, we applied a Mendelian randomization (MR) study to explore the causal relationship between IL and T2DM, which has the potential to provide guidance for assessing T2DM activity and T2DM- prevention in young at-risk populations. Materials and Methods: To classify the study, a two-sample MR, using genetic instrumental variables (IVs) to explore the causal effect was applied to test the influence of IL on the risk of T2DM. In this study, MR was carried out on GWAS data using 8 independent IL SNPs as IVs. The pooled odds ratio (OR) of these SNPs was calculated by the inverse-variance weighted method for the assessment of the risk the shorter IL brings to T2DM. Sensitivity validation was conducted to identify the effect of individual SNPs. MR-Egger regression was used to detect pleiotropic bias of IVs. Results: The pooled odds ratio from the IVW method was 1.03 (95% CI 0.89-1.18, P = 0.0785), low intercept was -0.477, P = 0.252, and small fluctuation of ORs ranged from -0.062 ((0.966 - 1.03) / 1.03) to 0.05 ((1.081 - 1.03) / 1.03) in leave-one-out validation. Conclusion: We validated that the shorter IL causes no additional risk to T2DM. The sensitivity analysis and the MR-Egger regression analysis also provided adequate evidence that the above result was not due to any heterogeneity or pleiotropic effect of IVs.


2020 ◽  
Vol 49 (4) ◽  
pp. 1185-1193 ◽  
Author(s):  
Camelia C Minică ◽  
Dorret I Boomsma ◽  
Conor V Dolan ◽  
Eco de Geus ◽  
Michael C Neale

Abstract Background Mendelian randomization (MR) is widely used to unravel causal relationships in epidemiological studies. Whereas multiple MR methods have been developed to control for bias due to horizontal pleiotropy, their performance in the presence of other sources of bias, like non-random mating, has been mostly evaluated using simulated data. Empirical comparisons of MR estimators in such scenarios have yet to be conducted. Pleiotropy and non-random mating have been shown to account equally for the genetic correlation between height and educational attainment. Previous studies probing the causal nature of this association have produced conflicting results. Methods We estimated the causal effect of height on educational attainment in various MR models, including the MR-Egger and the MR-Direction of Causation (MR-DoC) models that correct for, or explicitly model, horizontal pleiotropy. Results We reproduced the weak but positive association between height and education in the Netherlands Twin Register sample (P= 3.9 × 10–6). All MR analyses suggested that height has a robust, albeit small, causal effect on education. We showed via simulations that potential assortment for height and education had no effect on the causal parameter in the MR-DoC model. With the pleiotropic effect freely estimated, MR-DoC yielded a null finding. Conclusions Non-random mating may have a bearing on the results of MR studies based on unrelated individuals. Family data enable tests of causal relationships to be conducted more rigorously, and are recommended to triangulate results of MR studies assessing pairs of traits leading to non-random mate selection.


2017 ◽  
Vol 2 ◽  
pp. 11 ◽  
Author(s):  
Deborah A. Lawlor ◽  
Rebecca Richmond ◽  
Nicole Warrington ◽  
George McMahon ◽  
George Davey Smith ◽  
...  

Mendelian randomization (MR), the use of genetic variants as instrumental variables (IVs) to test causal effects, is increasingly used in aetiological epidemiology. Few of the methodological developments in MR have considered the specific situation of using genetic IVs to test the causal effect of exposures in pregnant women on postnatal offspring outcomes. In this paper, we describe specific ways in which the IV assumptions might be violated when MR is used to test such intrauterine effects. We highlight the importance of considering the extent to which there is overlap between genetic variants in offspring that influence their outcome with genetic variants used as IVs in their mothers. Where there is overlap, and particularly if it generates a strong association of maternal genetic IVs with offspring outcome via the offspring genotype, the exclusion restriction assumption of IV analyses will be violated. We recommend a set of analyses that ought to be considered when MR is used to address research questions concerned with intrauterine effects on post-natal offspring outcomes, and provide details of how these can be undertaken and interpreted. These additional analyses include the use of genetic data from offspring and fathers, examining associations using maternal non-transmitted alleles, and using simulated data in sensitivity analyses (for which we provide code). We explore the extent to which new methods that have been developed for exploring violation of the exclusion restriction assumption in the two-sample setting (MR-Egger and median based methods) might be used when exploring intrauterine effects in one-sample MR. We provide a list of recommendations that researchers should use when applying MR to test the effects of intrauterine exposures on postnatal offspring outcomes and use an illustrative example with real data to demonstrate how our recommendations can be applied and subsequent results appropriately interpreted.


Author(s):  
Parisa Torkaman

The generalized inverted exponential distribution is introduced as a lifetime model with good statistical properties. This paper, the estimation of the probability density function and the cumulative distribution function of with five different estimation methods: uniformly minimum variance unbiased(UMVU), maximum likelihood(ML), least squares(LS), weighted least squares (WLS) and percentile(PC) estimators are considered. The performance of these estimation procedures, based on the mean squared error (MSE) by numerical simulations are compared. Simulation studies express that the UMVU estimator performs better than others and when the sample size is large enough the ML and UMVU estimators are almost equivalent and efficient than LS, WLS and PC. Finally, the result using a real data set are analyzed.


Author(s):  
AM Hughes ◽  
H Ask ◽  
T Tesli ◽  
RB Askeland ◽  
T Reichborn-Kjennerud ◽  
...  

Author(s):  
Guanghao Qi ◽  
Nilanjan Chatterjee

Abstract Background Previous studies have often evaluated methods for Mendelian randomization (MR) analysis based on simulations that do not adequately reflect the data-generating mechanisms in genome-wide association studies (GWAS) and there are often discrepancies in the performance of MR methods in simulations and real data sets. Methods We use a simulation framework that generates data on full GWAS for two traits under a realistic model for effect-size distribution coherent with the heritability, co-heritability and polygenicity typically observed for complex traits. We further use recent data generated from GWAS of 38 biomarkers in the UK Biobank and performed down sampling to investigate trends in estimates of causal effects of these biomarkers on the risk of type 2 diabetes (T2D). Results Simulation studies show that weighted mode and MRMix are the only two methods that maintain the correct type I error rate in a diverse set of scenarios. Between the two methods, MRMix tends to be more powerful for larger GWAS whereas the opposite is true for smaller sample sizes. Among the other methods, random-effect IVW (inverse-variance weighted method), MR-Robust and MR-RAPS (robust adjust profile score) tend to perform best in maintaining a low mean-squared error when the InSIDE assumption is satisfied, but can produce large bias when InSIDE is violated. In real-data analysis, some biomarkers showed major heterogeneity in estimates of their causal effects on the risk of T2D across the different methods and estimates from many methods trended in one direction with increasing sample size with patterns similar to those observed in simulation studies. Conclusion The relative performance of different MR methods depends heavily on the sample sizes of the underlying GWAS, the proportion of valid instruments and the validity of the InSIDE assumption. Down-sampling analysis can be used in large GWAS for the possible detection of bias in the MR methods.


Sign in / Sign up

Export Citation Format

Share Document