scholarly journals A Mechanism for Severity of Disease in Older Patients with COVID-19: The Nexus between Telomere Length and Lymphopenia

Author(s):  
Athanase Benetos ◽  
Tsung-Po Lai ◽  
Simon Toupance ◽  
Carlos Labat ◽  
Simon Verhulst ◽  
...  

AbstractBackgroundLymphopenia due to a plummeting T-cell count is a major feature of severe COVID-19. T-cell proliferation is telomere length (TL)-dependent and TL shortens with age. Older persons are disproportionally affected by severe COVID-19, and we hypothesized that those with short TL have less capacity to mount an adequate T-cell proliferative response to SARS-CoV-2. This hypothesis predicts that among older patients with COVID-19, shorter telomeres of peripheral blood mononuclear cells (PBMCs) will be associated with a lower lymphocyte count.MethodsOur sample comprised 17 COVID-19 and 21 non-COVID-19 patients, aged 87 ± 8 (mean ± SD) and 87 ± 9 years, respectively. We measured TL by the Telomere Shortest Length Assay, a novel method that measures and tallies the short telomeres directly relevant to telomere-mediated biological processes. The primary analysis quantified TL as the proportion of telomeres shorter than 2 kilobases. For comparison, we also quantified TL by Southern blotting, which measures the mean length of telomeres.ResultsLymphocyte count (109/L) was 0.91 ± 0.42 in COVID-19 patients and 1.50 ± 0.50 in non-COVID-19 patients (P < 0.001). In COVID-19 patients, but not in non-COVID-19 patients, lymphocyte count was inversely correlated with the proportion of telomeres shorter than 2 kilobases (P = 0.005) and positively correlated with the mean of telomeres measured by TeSLA (P = 0.03). Lymphocyte counts showed no statistically significant correlations with Southern blotting results in COVID-19 or non-COVID-19 patients.ConclusionsThese results support the hypothesis that a compromised TL-dependent T-cell proliferative response contributes to lymphopenia and the resulting disproportionate severity of COVID-19 among old adults. We infer that infection with SARS-CoV-2 uncovers the limits of the TL reserves of older persons.

Author(s):  
Athanase Benetos ◽  
Tsung-Po Lai ◽  
Simon Toupance ◽  
Carlos Labat ◽  
Simon Verhulst ◽  
...  

Abstract Profound T-cell lymphopenia is the hallmark of severe coronavirus disease 2019 (COVID-19). T-cell proliferation is telomere length (TL) dependent and telomeres shorten with age. Older COVID-19 patients, we hypothesize, are, therefore, at a higher risk of having TL-dependent lymphopenia. We measured TL by the novel Telomere Shortest Length Assay (TeSLA), and by Southern blotting (SB) of the terminal restriction fragments in peripheral blood mononuclear cells of 17 COVID-19 and 21 non-COVID-19 patients, aged 87 ± 8 (mean ± SD) and 87 ± 9 years, respectively. TeSLA tallies and measures single telomeres, including short telomeres undetected by SB. Such telomeres are relevant to TL-mediated biological processes, including cell viability and senescence. TeSLA yields 2 key metrics: the proportions of telomeres with different lengths (expressed in %) and their mean (TeSLA mTL), (expressed in kb). Lymphocyte count (109/L) was 0.91 ± 0.42 in COVID-19 patients and 1.50 ± 0.50 in non-COVID-19 patients (p &lt; .001). In COVID-19 patients, but not in non-COVID-19 patients, lymphocyte count was inversely correlated with the proportion of telomeres shorter than 2 kb (p = .005) and positively correlated with TeSLA mTL (p = .03). Lymphocyte count was not significantly correlated with SB mTL in either COVID-19 or non-COVID-19 patients. We propose that compromised TL-dependent T-cell proliferative response, driven by short telomere in the TL distribution, contributes to COVID-19 lymphopenia among old adults. We infer that infection with SARS-CoV-2 uncovers the limits of the TL reserves of older persons. Clinical Trials Registration Number NCT04325646.


Author(s):  
Yacov Ron ◽  
Patrick De Baetselier ◽  
Julius Gordon ◽  
Michael Feldman ◽  
Shraga Segal

2019 ◽  
Vol 74 (12) ◽  
pp. 3546-3554 ◽  
Author(s):  
Claire Roubaud Baudron ◽  
Rachel Legeron ◽  
Julien Ollivier ◽  
Fabrice Bonnet ◽  
Carine Greib ◽  
...  

Abstract Background Antibiotic administration by subcutaneous (SC) injection is common practice in French geriatric wards as an alternative to the intravenous (IV) route, but few pharmacokinetic/pharmacodynamic data are available. Ertapenem is useful for the treatment of infections with ESBL-producing enterobacteria. Objectives To report and compare ertapenem pharmacokinetic data between IV and SC routes in older persons. Methods Patients >65 years of age receiving ertapenem (1 g once daily) for at least 48 h (IV or SC, steady-state) were prospectively enrolled. Total ertapenem concentrations [residual (C0), IV peak (C0.5) and SC peak (C2.5)] were determined by UV HPLC. Individual-predicted AUC0–24 values were calculated and population pharmacokinetic analyses were performed. Using the final model, a Monte Carlo simulation involving 10 000 patients evaluated the influence of SC or IV administration on the PTA. Tolerance to ertapenem and recovery were also monitored. ClinicalTrials.gov identifier: NCT02505386. Results Ten (mean ± SD age=87±7 years) and 16 (age=88±5 years) patients were included in the IV and SC groups, respectively. The mean C0 and C2.5 values were not significantly different between the IV and SC groups (C0=12±5.9 versus 12±7.4 mg/L, P=0.97; C2.5=97±42 versus 67±41 mg/L, P=0.99). The mean C0.5 was higher in the IV group compared with the SC group (C0.5=184±90 versus 51±66 mg/L, P=0.001). The mean individual AUCs (1126.92±334.99 mg·h/L for IV versus 1005.3±266.0 mg·h/L for SC, P=0.38) and PTAs were not significantly different between groups. No severe antibiotic-related adverse effects were noted. Conclusions SC administration of ertapenem is an alternative to IV administration in older patients.


1997 ◽  
Vol 56 ◽  
pp. 420
Author(s):  
M. Krulová ◽  
H. Havelková ◽  
M. Kosařová ◽  
V. Holáň ◽  
A.A.M. Hart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document