Individual differences in proprioception predict the extent of implicit sensorimotor adaptation

2020 ◽  
Author(s):  
Jonathan S. Tsay ◽  
Hyosub E. Kim ◽  
Darius E. Parvin ◽  
Alissa R. Stover ◽  
Richard B. Ivry

ABSTRACTRecent studies have revealed an upper bound in motor adaptation, beyond which other learning systems may be recruited. The factors determining this upper bound are poorly understood. The multisensory integration hypothesis states that this limit arises from opposing responses to visual and proprioceptive feedback. As individuals adapt to a visual perturbation, they experience an increasing proprioceptive error in the opposite direction, and the upper bound is the point where these two error signals reach an equilibrium. Assuming that visual and proprioceptive feedback are weighted according to their variability, there should be a correlation between proprioceptive variability and the limits of adaptation. Alternatively, the proprioceptive realignment hypothesis states that the upper bound arises when the (biased) sensed hand position realigns with the target. When a visuo-proprioceptive discrepancy is introduced, the sensed hand position is biased towards the visual cursor and the adaptive system nullifies this discrepancy by driving the hand away from the target. This hypothesis predicts a correlation between the size of the proprioceptive shift and the upper bound of adaptation. We tested these two hypotheses by considering natural variation in proprioception and motor adaptation across individuals. We observed a modest, yet reliable correlation between the upper bound of adaptation with both proprioceptive measures (variability and shift). While these results do not favor one hypothesis over the other, they underscore the critical role of proprioception in sensorimotor adaptation, and moreover, motivate a novel perspective on how these proprioceptive constraints drive implicit changes in motor behavior.SIGNIFICANCE STATEMENTWhile the sensorimotor system uses sensory feedback to remain properly calibrated, this learning process is constrained, limited in the maximum degree of plasticity. The factors determining this limit remain elusive. Guided by two hypotheses concerning how visual and proprioceptive information are integrated, we show that individual differences in the upper bound of adaptation in response to a visual perturbation can be predicted by the bias and variability in proprioception. These results underscore the critical, but often neglected role of proprioception in human motor learning.

Author(s):  
Jonathan Sanching Tsay ◽  
Hyosub E. Kim ◽  
Darius E. Parvin ◽  
Alissa R Stover ◽  
Richard B. Ivry

Recent studies have revealed an upper bound in motor adaptation, beyond which other learning systems may be recruited. The factors determining this upper bound are poorly understood. The multisensory integration hypothesis states that this limit arises from opposing responses to visual and proprioceptive feedback. As individuals adapt to a visual perturbation, they experience an increasing proprioceptive error in the opposite direction, and the upper bound is the point where these two error signals reach an equilibrium. Assuming that visual and proprioceptive feedback are weighted according to their variability, there should be a correlation between proprioceptive variability and the limits of adaptation. Alternatively, the proprioceptive realignment hypothesis states that the upper bound arises when the (visually biased) sensed hand position realigns with the expected sensed position (target). When a visuo-proprioceptive discrepancy is introduced, the sensed hand position is biased towards the visual cursor, and the adaptive system counteracts this discrepancy by driving the hand away from the target. This hypothesis predicts a correlation between the size of the proprioceptive shift and the upper bound of adaptation. We tested these two hypotheses by considering natural variation in proprioception and motor adaptation across individuals. We observed a modest, yet reliable correlation between the upper bound of adaptation with both proprioceptive measures (variability and shift). While these results do not favor one hypothesis over the other, they underscore the critical role of proprioception in sensorimotor adaptation, and moreover, motivate a novel perspective on how these proprioceptive constraints drive implicit changes in motor behavior.


Author(s):  
Koenraad Vandevoorde ◽  
Jean-Jacques Orban de Xivry

The ability to adjust movements to changes in the environment declines with aging. This age-related decline is caused by the decline of explicit adjustments. However, implicit adaptation remains intact and might even be increased with aging. Since proprioceptive information has been linked to implicit adaptation, it might well be that an age-related decline in proprioceptive acuity might be linked to the performance of older adults in implicit adaptation tasks. Indeed, age-related proprioceptive deficits could lead to altered sensory integration with an increased weighting of the visual sensory-prediction error. Another possibility is that reduced proprioceptive acuity results in an increased reliance on predicted sensory consequences of the movement. Both these explanations led to our preregistered hypothesis: we expected a relation between the decline of proprioception and the amount of implicit adaptation across ages. However, we failed to support this hypothesis. Our results question the existence of reliability-based integration of visual and proprioceptive signals during motor adaptation.


2021 ◽  
pp. 1-14
Author(s):  
Claudia Cornelis ◽  
Livia J. De Picker ◽  
Violette Coppens ◽  
Anne Morsel ◽  
Maarten Timmers ◽  
...  

<b><i>Background:</i></b> The “cognitive dysmetria hypothesis” of schizophrenia proposes a disrupted communication between the cerebellum and cerebral cortex, resulting in sensorimotor and cognitive symptoms. Sensorimotor adaptation relies strongly on the function of the cerebellum. <b><i>Objectives:</i></b> This study investigated whether sensorimotor adaptation is reduced in schizophrenia compared with age-matched and elderly healthy controls. <b><i>Methods:</i></b> Twenty-nine stably treated patients with schizophrenia, 30 age-matched, and 30 elderly controls were tested in three motor adaptation tasks in which visual movement feedback was unexpectedly altered. In the “rotation adaptation task” the perturbation consisted of a rotation (30° clockwise), in the “gain adaptation task” the extent of the movement feedback was reduced (by a factor of 0.7) and in the “vertical reversal task,” up- and downward pen movements were reversed by 180°. <b><i>Results:</i></b> Patients with schizophrenia adapted to the perturbations, but their movement times and errors were substantially larger than controls. Unexpectedly, the magnitude of adaptation was significantly smaller in schizophrenia than elderly participants. The impairment already occurred during the first adaptation trials, pointing to a decline in explicit strategy use. Additionally, post-adaptation aftereffects provided strong evidence for impaired implicit adaptation learning. Both negative and positive schizophrenia symptom severities were correlated with indices of the amount of adaptation and its aftereffects. <b><i>Conclusions:</i></b> Both explicit and implicit components of sensorimotor adaptation learning were reduced in patients with schizophrenia, adding to the evidence for a role of the cerebellum in the pathophysiology of schizophrenia. Elderly individuals outperformed schizophrenia patients in the adaptation learning tasks.


2018 ◽  
Author(s):  
Li-Ann Leow ◽  
Welber Marinovic ◽  
Aymar de Rugy ◽  
Timothy J Carroll

AbstractPerturbations of sensory feedback evoke sensory prediction errors (discrepancies between predicted and actual sensory outcomes of movements), and reward prediction errors (discrepancies between predicted rewards and actual rewards). Sensory prediction errors result in obligatory remapping of the relationship between motor commands and predicted sensory outcomes. The role of reward prediction errors in sensorimotor adaptation is less clear. When moving towards a target, we expect to obtain the reward of hitting the target, and so we experience a reward prediction error if the perturbation causes us to miss it. These discrepancies between desired task outcomes and actual task outcomes, or “task errors”, are thought to drive the use of strategic processes to restore success, although their role is not fully understood. Here, we investigated the role of task errors in sensorimotor adaptation: during target-reaching, we either removed task errors by moving the target mid-movement to align with cursor feedback of hand position, or enforced task error by moving the target away from the cursor feedback of hand position. Removing task errors not only reduced the rate and extent of adaptation during exposure to the perturbation, but also reduced the amount of post-adaptation implicit remapping. Hence, task errors contribute to implicit remapping resulting from sensory prediction errors. This suggests that the system which implicitly acquires new sensorimotor maps via exposure to sensory prediction errors is also sensitive to reward prediction errors.


2021 ◽  
Author(s):  
Jonathan Sanching Tsay ◽  
Hyosub E Kim ◽  
Adrian M Haith ◽  
Richard B Ivry

Multiple learning processes contribute to successful goal-directed actions in the face of changing physiological states, biomechanical constraints, and environmental contexts. Amongst these processes, implicit sensorimotor adaptation is of primary importance, ensuring that movements remain well-calibrated and accurate. A large body of work on reaching movements has emphasized how adaptation centers on an iterative process designed to minimize visual errors. The role of proprioception has been largely neglected, thought to play a passive role in which proprioception is affected by the visual error but does not directly contribute to adaptation. Here we present an alternative to this visuo-centric framework, arguing that that implicit adaptation can be understood as minimizing a proprioceptive error, the distance between the perceived hand position and its intended goal. We use this proprioceptive re-alignment model (PReMo) to re-examine many phenomena that have previously been interpreted in terms of learning from visual errors, as well as offer novel accounts for unexplained phenomena. We discuss potential challenges for this new perspective on implicit adaptation and outline a set of predictions for future experimentation.


Author(s):  
Jonathan S. Tsay ◽  
Darius E. Parvin ◽  
Richard B. Ivry

ABSTRACTSensorimotor learning entails multiple learning processes, some volitional and explicit, and others automatic and implicit. A new method to isolate implicit adaptation involves the use of a “clamped” visual perturbation in which, during a reaching movement, visual feedback is limited to a cursor that follows an invariant trajectory, offset from the target by a fixed angle. Despite full awareness that the cursor movement is not contingent on their behavior, as well as explicit instructions to ignore the cursor, systematic changes in motor behavior are observed, and these changes have the signatures of implicit adaptation observed in studies using classic visuomotor perturbations. While it is clear that the response to clamped feedback occurs automatically, it remains unknown if the adjustments in behavior remain outside the participant’s awareness. To address this question, we used the clamp method and directly probed awareness by asking participants to report their hand position after each reach. As expected, we observed robust deviations in hand angle away from the target (average of ∼18°). The hand reports also showed systematic deviations over the course of adaptation, initially attracted towards the visual feedback and then in the opposite direction, paralleling the shift in hand position. However, these effects were subtle (∼2° at asymptote), with the hand reports dominated by a feedforward signal associated with the motor intent yet modulated in a limited way by feedback sources. These results confirm that adaptation in response to a visual perturbation is not only automatic, but also largely implicit.NEWS AND NOTEWORTHYSensorimotor adaptation operates in an obligatory manner. Qualitatively, subjective reports obtained after adaptation demonstrate that, in many conditions, participants are unaware of significant changes in behavior. In the present study, we quantified participants’ awareness of adaptation by obtaining reports of hand position on a trial-by-trial basis. The results confirm that participants are largely unaware of adaptation, but also reveal the subtle influence of feedback on their subjective experience.


2020 ◽  
Author(s):  
Dimitrios J. Palidis ◽  
Heather R. McGregor ◽  
Andrew Vo ◽  
Penny A. Macdonald ◽  
Paul L. Gribble

AbstractDopamine signaling is thought to mediate reward-based learning. We tested for a role of dopamine in motor adaptation by administering the dopamine precursor levodopa to healthy participants in two experiments involving reaching movements. Levodopa has been shown to impair reward-based learning in cognitive tasks. Thus, we hypothesized that levodopa would selectively impair aspects of motor adaptation that depend on reinforcement of rewarding actions.In the first experiment, participants performed two separate tasks in which adaptation was driven either by visual feedback of the hand position or binary reward feedback. We used EEG to measure event-related potentials evoked by task feedback. We hypothesized that levodopa would specifically diminish adaptation and the neural responses to feedback in the reward learning task. However, levodopa did not affect motor adaptation in either task nor did it diminish event-related potentials elicited by reward outcomes.In the second experiment, participants learned to compensate for mechanical force field perturbations applied to the hand during reaching. Previous exposure to a particular force field can result in savings during subsequent adaptation to the same force field and interference during adaptation to an opposite force field. We hypothesized that levodopa would diminish savings and anterograde interference, as previous work suggests that these phenomena result from a reinforcement learning process. However, we found no reliable effects of levodopa.These results suggest that reward-based motor adaptation, savings, and interference may not depend on the same dopaminergic mechanisms which have been shown to be disrupted by levodopa during various cognitive tasks.New and NoteworthyMotor adaptation relies on multiple processes including reinforcement of successful actions. Cognitive reinforcement learning is impaired by levodopa-induced disruption of dopamine function. We administered levodopa to healthy adults who participated in multiple motor adaptation tasks. We found no effects of levodopa on any component of motor adaptation. This suggests that motor adaptation may not depend on the same dopaminergic mechanisms as cognitive forms or reinforcement learning which have been shown to be impaired by levodopa.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


2008 ◽  
Vol 15 (2) ◽  
pp. 50-59 ◽  
Author(s):  
Amy Philofsky

AbstractRecent prevalence estimates for autism have been alarming as a function of the notable increase. Speech-language pathologists play a critical role in screening, assessment and intervention for children with autism. This article reviews signs that may be indicative of autism at different stages of language development, and discusses the importance of several psychometric properties—sensitivity and specificity—in utilizing screening measures for children with autism. Critical components of assessment for children with autism are reviewed. This article concludes with examples of intervention targets for children with ASD at various levels of language development.


1998 ◽  
Vol 5 (1) ◽  
pp. 115A-115A
Author(s):  
K CHWALISZ ◽  
E WINTERHAGER ◽  
T THIENEL ◽  
R GARFIELD
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document