scholarly journals Conduction velocity along the local axons of parvalbumin interneurons correlates with the degree of axonal myelination

2020 ◽  
Author(s):  
Kristina D. Micheva ◽  
Marianna Kiraly ◽  
Marc M. Perez ◽  
Daniel V. Madison

AbstractParvalbumin-containing (PV+) basket cells in mammalian neocortex are fast-spiking interneurons that regulate the activity of local neuronal circuits in multiple ways. Even though PV+ basket cells are locally projecting interneurons, their axons are myelinated. Can this myelination contribute in any significant way to the speed of action potential propagation along such short axons? We used dual whole cell recordings of synaptically connected PV+ interneurons and their postsynaptic target in acutely-prepared neocortical slices from adult mice to measure the amplitude and latency of single presynaptic action potential-evoked inhibitory postsynaptic currents (IPSCs). These same neurons were then imaged with immunofluorescent array tomography, the synaptic contacts between them identified and a precise map of the connections was generated, with the exact axonal length and extent of myelin coverage. Our results support that myelination of PV+ basket cells significantly increases conduction velocity, and does so to a degree that can be physiologically relevant.

2001 ◽  
Vol 86 (6) ◽  
pp. 2998-3010 ◽  
Author(s):  
Nace L. Golding ◽  
William L. Kath ◽  
Nelson Spruston

In hippocampal CA1 pyramidal neurons, action potentials are typically initiated in the axon and backpropagate into the dendrites, shaping the integration of synaptic activity and influencing the induction of synaptic plasticity. Despite previous reports describing action-potential propagation in the proximal apical dendrites, the extent to which action potentials invade the distal dendrites of CA1 pyramidal neurons remains controversial. Using paired somatic and dendritic whole cell recordings, we find that in the dendrites proximal to 280 μm from the soma, single backpropagating action potentials exhibit <50% attenuation from their amplitude in the soma. However, in dendritic recordings distal to 300 μm from the soma, action potentials in most cells backpropagated either strongly (26–42% attenuation; n = 9/20) or weakly (71–87% attenuation; n = 10/20) with only one cell exhibiting an intermediate value (45% attenuation). In experiments combining dual somatic and dendritic whole cell recordings with calcium imaging, the amount of calcium influx triggered by backpropagating action potentials was correlated with the extent of action-potential invasion of the distal dendrites. Quantitative morphometric analyses revealed that the dichotomy in action-potential backpropagation occurred in the presence of only subtle differences in either the diameter of the primary apical dendrite or branching pattern. In addition, action-potential backpropagation was not dependent on a number of electrophysiological parameters (input resistance, resting potential, voltage sensitivity of dendritic spike amplitude). There was, however, a striking correlation of the shape of the action potential at the soma with its amplitude in the dendrite; larger, faster-rising, and narrower somatic action potentials exhibited more attenuation in the distal dendrites (300–410 μm from the soma). Simple compartmental models of CA1 pyramidal neurons revealed that a dichotomy in action-potential backpropagation could be generated in response to subtle manipulations of the distribution of either sodium or potassium channels in the dendrites. Backpropagation efficacy could also be influenced by local alterations in dendritic side branches, but these effects were highly sensitive to model parameters. Based on these findings, we hypothesize that the observed dichotomy in dendritic action-potential amplitude is conferred primarily by differences in the distribution, density, or modulatory state of voltage-gated channels along the somatodendritic axis.


2021 ◽  
Vol 7 (25) ◽  
pp. eabg4693
Author(s):  
Yangfan Peng ◽  
Federico J. Barreda Tomas ◽  
Paul Pfeiffer ◽  
Moritz Drangmeister ◽  
Susanne Schreiber ◽  
...  

In cortical microcircuits, it is generally assumed that fast-spiking parvalbumin interneurons mediate dense and nonselective inhibition. Some reports indicate sparse and structured inhibitory connectivity, but the computational relevance and the underlying spatial organization remain unresolved. In the rat superficial presubiculum, we find that inhibition by fast-spiking interneurons is organized in the form of a dominant super-reciprocal microcircuit motif where multiple pyramidal cells recurrently inhibit each other via a single interneuron. Multineuron recordings and subsequent 3D reconstructions and analysis further show that this nonrandom connectivity arises from an asymmetric, polarized morphology of fast-spiking interneuron axons, which individually cover different directions in the same volume. Network simulations assuming topographically organized input demonstrate that such polarized inhibition can improve head direction tuning of pyramidal cells in comparison to a “blanket of inhibition.” We propose that structured inhibition based on asymmetrical axons is an overarching spatial connectivity principle for tailored computation across brain regions.


PLoS Biology ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. e3001350
Author(s):  
Diana Fernández-Suárez ◽  
Favio A. Krapacher ◽  
Katarzyna Pietrajtis ◽  
Annika Andersson ◽  
Lilian Kisiswa ◽  
...  

The medial habenula (mHb) is an understudied small brain nucleus linking forebrain and midbrain structures controlling anxiety and fear behaviors. The mechanisms that maintain the structural and functional integrity of mHb neurons and their synapses remain unknown. Using spatiotemporally controlled Cre-mediated recombination in adult mice, we found that the glial cell–derived neurotrophic factor receptor alpha 1 (GFRα1) is required in adult mHb neurons for synaptic stability and function. mHb neurons express some of the highest levels of GFRα1 in the mouse brain, and acute ablation of GFRα1 results in loss of septohabenular and habenulointerpeduncular glutamatergic synapses, with the remaining synapses displaying reduced numbers of presynaptic vesicles. Chemo- and optogenetic studies in mice lacking GFRα1 revealed impaired circuit connectivity, reduced AMPA receptor postsynaptic currents, and abnormally low rectification index (R.I.) of AMPARs, suggesting reduced Ca2+ permeability. Further biochemical and proximity ligation assay (PLA) studies defined the presence of GluA1/GluA2 (Ca2+ impermeable) as well as GluA1/GluA4 (Ca2+ permeable) AMPAR complexes in mHb neurons, as well as clear differences in the levels and association of AMPAR subunits with mHb neurons lacking GFRα1. Finally, acute loss of GFRα1 in adult mHb neurons reduced anxiety-like behavior and potentiated context-based fear responses, phenocopying the effects of lesions to septal projections to the mHb. These results uncover an unexpected function for GFRα1 in the maintenance and function of adult glutamatergic synapses and reveal a potential new mechanism for regulating synaptic plasticity in the septohabenulointerpeduncular pathway and attuning of anxiety and fear behaviors.


2020 ◽  
Vol 10 (4) ◽  
pp. 136-141
Author(s):  
Mohammed Salah Elmagzoub ◽  
Ahmed Hassan Ahmed ◽  
Hussam M A Hameed

Background: Nerve conduction studies (NCSs) help in delineating the extent distribution of neural lesion, and the diagnosis of peripheral nerve disorders. Because normative nerve conduction parameters were not yet established in Sudan EMG laboratories, this study aims towards having our own reference values, as we are using the American and British parameters. This will allow avoiding the discrepancies that might be induced by many factors. Methods: NCSs were performed in 200 Median nerves of 100 adult healthy Sudanese subjects using standardized techniques. Results: The median SNAP (sensory nerve action potential) values were as follows: distal latency, 2.6±3 ms with a range of (2.3-2.9); peak latency, 3.5±0.5 ms (3.0-4.0); amplitude, 47.7±18.0μV (29.7-65.7); conduction velocity, 53.0±7.8 m/s (45.2-60.8). The following values were obtained for the Median nerve CMAP (compound muscle action potential) at wrist stimulation: distal latency, 3.5±0.5 ms with a range of (3.0-4.0); peak latency, 9.4± 1.0 ms (8.4-10.4); duration, 5.9±0.9 ms (5.0-6.8); amplitude, 12.3±2.5 mV (9.8-14.8); area, 43.0±10.4 mVms (32.6-53.4); conduction velocity, 63.6±6.2 m/s (57.4-69.8). The F wave was 28.4±1.8 ms (26.6-30.2). Conclusion: The overall mean sensory and motor nerve conduction parameters for the tested nerve compared favorably with the existing literature with some discrepancies that were justified.


2021 ◽  
Author(s):  
Steve Tran

Therapeutic HIFU has been used as a non-invasive energy modality to compromise nerve function since the 1950s. Several contributions have been made in recent years to characterize these effects on nerve function. In this study, short repeated bursts of HIFU, termed as pulsed high intensity focused ultrasound (pHIFU), was directed at nerve tissue. The pHIFU transducer operated at a central frequency of 1.95 MHz and had a focal length of approximately 12 cm. The ventral nerve cord from the American Lobster (Homarus americanus), n=15, was sonicated cumulatively at 3 exposure times: 1s, 6s, and 16s, at an intensity of 1010 W/cm2, or focal pressure of 5.51 MPa. The compound action potential (CAP) and conduction velocity (CV) were seen to decrease as sonication exposure time to the nerve increased. The experiments performed demonstrate the feasibility to modulate nerve CAP and nerve CV using non-thermal mechanisms of ultrasound.


2010 ◽  
Vol 35 (12) ◽  
pp. 2086-2095 ◽  
Author(s):  
Balázs Chiovini ◽  
Gergely F. Turi ◽  
Gergely Katona ◽  
Attila Kaszás ◽  
Ferenc Erdélyi ◽  
...  

1987 ◽  
Vol 58 (1) ◽  
pp. 180-194 ◽  
Author(s):  
F. R. Morales ◽  
P. A. Boxer ◽  
S. J. Fung ◽  
M. H. Chase

1. The electrophysiological properties of alpha-motoneurons in old cats (14–15 yr) were compared with those of adult cats (1–3 yr). These properties were measured utilizing intracellular recording and stimulating techniques. 2. Unaltered in the old cat motoneurons were the membrane potential, action potential amplitude, and slopes of the initial segment (IS) and soma dendritic (SD) spikes, as well as the duration and amplitude of the action potential's afterhyperpolarization. 3. In contrast, the following changes in the electrophysiological properties of lumbar motoneurons were found in the old cats: a decrease in axonal conduction velocity, a shortening of the IS-SD delay, an increase in input resistance, and a decrease in rheobase. 4. In spite of these considerable changes in motoneuron properties in the old cat, normal correlations between different electrophysiological properties were maintained. The following key relationships, among others, were the same in adult and old cat motoneurons: membrane potential polarization versus action potential amplitude, duration of the afterhyperpolarization versus motor axon conduction velocity, and rheobase versus input conductance. 5. A review of the existing literature reveals that neither chronic spinal cord section nor deafferentation (13, 21) in adult animals produce the changes observed in old cats. Thus we consider it unlikely that a loss of synaptic contacts was responsible for the modifications in electrophysiological properties observed in old cat motoneurons. 6. We conclude that during old age there are significant changes in the soma-dendritic portion of cat motoneurons, as indicated by the modifications found in input resistance, rheobase, and IS-SD delay, as well as significant changes in their axons, as indicated by a decrease in conduction velocity.


1985 ◽  
Vol 249 (6) ◽  
pp. H1228-H1231 ◽  
Author(s):  
R. W. Joyner ◽  
E. D. Overholt

The effects of 0.2 mM octanol on action potential propagation were investigated using in vitro preparations of canine papillary muscles. In these preparations an action potential initiated in the superficial Purkinje (P) layer propagates across specific Purkinje-ventricular junction (PVJ) sites into the underlying ventricular (V) layer. The conduction delay at PVJ sites increased from 4.85 +/- 1.55 to 8.85 +/- 3.34 (mean +/- SD) ms (n = 10, P less than 0.005), an 82% increase. However, propagation within the V syncytium was much less affected, with a decrease of conduction velocity by only 10% and a decrease in the maximal rate of rise of the action potential of 23%. The results indicate that octanol, which has previously been shown to increase gap junctional resistance, has a preferential effect on PVJ sites, as predicted by the hypothesis that there is a restricted pathway for intracellular current flow from P cells to V cells at these sites.


Sign in / Sign up

Export Citation Format

Share Document