Dichotomy of Action-Potential Backpropagation in CA1 Pyramidal Neuron Dendrites

2001 ◽  
Vol 86 (6) ◽  
pp. 2998-3010 ◽  
Author(s):  
Nace L. Golding ◽  
William L. Kath ◽  
Nelson Spruston

In hippocampal CA1 pyramidal neurons, action potentials are typically initiated in the axon and backpropagate into the dendrites, shaping the integration of synaptic activity and influencing the induction of synaptic plasticity. Despite previous reports describing action-potential propagation in the proximal apical dendrites, the extent to which action potentials invade the distal dendrites of CA1 pyramidal neurons remains controversial. Using paired somatic and dendritic whole cell recordings, we find that in the dendrites proximal to 280 μm from the soma, single backpropagating action potentials exhibit <50% attenuation from their amplitude in the soma. However, in dendritic recordings distal to 300 μm from the soma, action potentials in most cells backpropagated either strongly (26–42% attenuation; n = 9/20) or weakly (71–87% attenuation; n = 10/20) with only one cell exhibiting an intermediate value (45% attenuation). In experiments combining dual somatic and dendritic whole cell recordings with calcium imaging, the amount of calcium influx triggered by backpropagating action potentials was correlated with the extent of action-potential invasion of the distal dendrites. Quantitative morphometric analyses revealed that the dichotomy in action-potential backpropagation occurred in the presence of only subtle differences in either the diameter of the primary apical dendrite or branching pattern. In addition, action-potential backpropagation was not dependent on a number of electrophysiological parameters (input resistance, resting potential, voltage sensitivity of dendritic spike amplitude). There was, however, a striking correlation of the shape of the action potential at the soma with its amplitude in the dendrite; larger, faster-rising, and narrower somatic action potentials exhibited more attenuation in the distal dendrites (300–410 μm from the soma). Simple compartmental models of CA1 pyramidal neurons revealed that a dichotomy in action-potential backpropagation could be generated in response to subtle manipulations of the distribution of either sodium or potassium channels in the dendrites. Backpropagation efficacy could also be influenced by local alterations in dendritic side branches, but these effects were highly sensitive to model parameters. Based on these findings, we hypothesize that the observed dichotomy in dendritic action-potential amplitude is conferred primarily by differences in the distribution, density, or modulatory state of voltage-gated channels along the somatodendritic axis.

2000 ◽  
Vol 84 (5) ◽  
pp. 2398-2408 ◽  
Author(s):  
Nathan P. Staff ◽  
Hae-Yoon Jung ◽  
Tara Thiagarajan ◽  
Michael Yao ◽  
Nelson Spruston

Action potentials are the end product of synaptic integration, a process influenced by resting and active neuronal membrane properties. Diversity in these properties contributes to specialized mechanisms of synaptic integration and action potential firing, which are likely to be of functional significance within neural circuits. In the hippocampus, the majority of subicular pyramidal neurons fire high-frequency bursts of action potentials, whereas CA1 pyramidal neurons exhibit regular spiking behavior when subjected to direct somatic current injection. Using patch-clamp recordings from morphologically identified neurons in hippocampal slices, we analyzed and compared the resting and active membrane properties of pyramidal neurons in the subiculum and CA1 regions of the hippocampus. In response to direct somatic current injection, three subicular firing types were identified (regular spiking, weak bursting, and strong bursting), while all CA1 neurons were regular spiking. Within subiculum strong bursting neurons were found preferentially further away from the CA1 subregion. Input resistance ( R N), membrane time constant (τm), and depolarizing “sag” in response to hyperpolarizing current pulses were similar in all subicular neurons, while R N and τm were significantly larger in CA1 neurons. The first spike of all subicular neurons exhibited similar action potential properties; CA1 action potentials exhibited faster rising rates, greater amplitudes, and wider half-widths than subicular action potentials. Therefore both the resting and active properties of CA1 pyramidal neurons are distinct from those of subicular neurons, which form a related class of neurons, differing in their propensity to burst. We also found that both regular spiking subicular and CA1 neurons could be transformed into a burst firing mode by application of a low concentration of 4-aminopyridine, suggesting that in both hippocampal subfields, firing properties are regulated by a slowly inactivating, D-type potassium current. The ability of all subicular pyramidal neurons to burst strengthens the notion that they form a single neuronal class, sharing a burst generating mechanism that is stronger in some cells than others.


1995 ◽  
Vol 74 (2) ◽  
pp. 673-683 ◽  
Author(s):  
A. A. Oyelese ◽  
D. L. Eng ◽  
G. B. Richerson ◽  
J. D. Kocsis

1. The effects of axotomy on the electrophysiologic properties of adult rat dorsal root ganglion (DRG) neurons were studied to understand the changes in excitability induced by traumatic nerve injury. Nerve injury was induced in vivo by sciatic nerve ligation with distal nerve transection. Two to four weeks after nerve ligation, a time when a neuroma forms, lumbar (L4 and L5) DRG neurons were removed and placed in short-term tissue culture. Whole cell patch-clamp recordings were made 5–24 h after plating. 2. DRG neurons were grouped into large (43–65 microns)-, medium (34–42 microns)-, and small (20–32 microns)- sized classes. Large neurons had short duration action potentials with approximately 60% having inflections on the falling phase of their action potentials. In contrast, action potentials of medium and small neurons were longer in duration and approximately 68% had inflections. 3. Pressure microejection of gamma-aminobutyric acid (GABA, 100 microM) or muscimol (100 microM) onto voltage-clamped DRG neurons elicited a rapidly desensitizing inward current that was blocked by 200 microM bicuculline. To measure the peak conductance induced by GABA or muscimol, neurons were voltage-clamped at a holding potential of -60 mV, and pulses to -80 mV and -100 mV were applied at a rate of 2.5 or 5 Hz during drug application. Slope conductances were calculated from plots of whole cell current measured at each of these potentials. 4. GABA-induced currents and conductances of control DRG neurons increased progressively with cell diameter. The mean GABA conductance was 36 +/- 10 nS (mean +/- SE) in small neurons, 124 +/- 21 nS in medium neurons, and 527 +/- 65 nS in large neurons. 5. After axotomy, medium neurons had significantly larger GABA-induced conductances compared with medium control neurons (390 +/- 50 vs. 124 +/- 21; P < 0.001). The increase in GABA conductance of medium neurons was associated with a decrease in duration of action potentials. In contrast, small neurons had no change in GABA conductance or action potential duration after ligation. The GABA conductance of large control neurons was highly variable, and ligation resulted in an increase that was significant only for neurons > 50 microns. The mean action potential duration in large neurons was not significantly changed, but neurons with inflections on the falling phase of the action potential were less common after ligation. There was no difference in resting potential or input resistance between control and ligated groups, except that the resting potential was less negative in small cells after axotomy.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 82 (4) ◽  
pp. 1895-1901 ◽  
Author(s):  
Jeffrey C. Magee ◽  
Michael Carruth

The role of dendritic voltage-gated ion channels in the generation of action potential bursting was investigated using whole cell patch-clamp recordings from the soma and dendrites of CA1 pyramidal neurons located in hippocampal slices of adult rats. Under control conditions somatic current injections evoked single action potentials that were associated with an afterhyperpolarization (AHP). After localized application of 4-aminopyridine (4-AP) to the distal apical dendritic arborization, the same current injections resulted in the generation of an afterdepolarization (ADP) and multiple action potentials. This burst firing was not observed after localized application of 4-AP to the soma/proximal dendrites. The dendritic 4-AP application allowed large-amplitude Na+-dependent action potentials, which were prolonged in duration, to backpropagate into the distal apical dendrites. No change in action potential backpropagation was seen with proximal 4-AP application. Both the ADP and action potential bursting could be inhibited by the bath application of nonspecific concentrations of divalent Ca2+ channel blockers (NiCl and CdCl). Ca2+ channel blockade also reduced the dendritic action potential duration without significantly affecting spike amplitude. Low concentrations of TTX (10–50 nM) also reduced the ability of the CA1 neurons to fire in the busting mode. This effect was found to be the result of an inhibition of backpropagating dendritic action potentials and could be overcome through the coordinated injection of transient, large-amplitude depolarizing current into the dendrite. Dendritic current injections were able to restore the burst firing mode (represented as a large ADP) even in the presence of high concentrations of TTX (300–500 μM). These data suggest the role of dendritic Na+ channels in bursting is to allow somatic/axonal action potentials to backpropagate into the dendrites where they then activate dendritic Ca2+ channels. Although it appears that most Ca2+ channel subtypes are important in burst generation, blockade of T- and R-type Ca2+ channels by NiCl (75 μM) inhibited action potential bursting to a greater extent than L-channel (10 μM nimodipine) or N-, P/Q-type (1 μM ω-conotoxin MVIIC) Ca2+ channel blockade. This suggest that the Ni-sensitive voltage-gated Ca2+ channels have the most important role in action potential burst generation. In summary, these data suggest that the activation of dendritic voltage-gated Ca2+ channels, by large-amplitude backpropagating spikes, provides a prolonged inward current that is capable of generating an ADP and burst of multiple action potentials in the soma of CA1 pyramidal neurons. Dendritic voltage-gated ion channels profoundly regulate the processing and storage of incoming information in CA1 pyramidal neurons by modulating the action potential firing mode from single spiking to burst firing.


2007 ◽  
Vol 98 (5) ◽  
pp. 2517-2524 ◽  
Author(s):  
Fouad Lemtiri-Chlieh ◽  
Eric S. Levine

In layer 2/3 of neocortex, brief trains of action potentials in pyramidal neurons (PNs) induce the mobilization of endogenous cannabinoids (eCBs), resulting in a depression of GABA release from the terminals of inhibitory interneurons (INs). This depolarization-induced suppression of inhibition (DSI) is mediated by activation of the type 1 cannabinoid receptor (CB1) on presynaptic terminals of a subset of INs. However, it is not clear whether CB1 receptors are also expressed at synapses between INs, and whether INs can release eCBs in response to depolarization. In the present studies, brain slices containing somatosensory cortex were prepared from 14- to 21-day-old CD-1 mice. Whole cell recordings were obtained from layer 2/3 PNs and from INs classified as regular spiking nonpyramidal, irregular spiking, or fast spiking. For all three classes of INs, the cannabinoid agonist WIN55,212-2 suppressed inhibitory synaptic activity, similar to the effect seen in PNs. In addition, trains of action potentials in PNs resulted in significant DSI. In INs, however, DSI was not seen in any cell type, even with prolonged high-frequency spike trains that produced calcium increases comparable to that seen with DSI induction in PNs. In addition, blocking eCB reuptake with AM404, which enhanced DSI in PNs, failed to unmask any DSI in INs. Thus the lack of DSI in INs does not appear to be due to an insufficient increase in intracellular calcium or enhanced reuptake. These results suggest that layer 2/3 INs receive CB1-expressing inhibitory inputs, but that eCBs are not released by these INs.


1996 ◽  
Vol 76 (5) ◽  
pp. 3460-3470 ◽  
Author(s):  
J. C. Magee ◽  
R. B. Avery ◽  
B. R. Christie ◽  
D. Johnston

1. Whole cell recordings and high-speed fluorescence imaging were used to investigate the contribution of voltage-gated Ca2+ channels to the resting Ca2+ concentration ([Ca2+]i) in hippocampal CA1 pyramidal neurons. 2. Prolonged membrane hyperpolarization produced, in a voltage-dependent manner, sustained decreases in [Ca2+]i in the somatic and apical dendritic regions of the neuron. This hyperpolarization-induced decrease in [Ca2+]i occurred with a time constant of approximately 1 s and was maintained for as long as the membrane potential was held at the new level. Ratiometric measures showed that [Ca2+]i is significantly elevated at holding potentials of -50 mV compared with -80 mV. 3. The hyperpolarization-induced decrease in [Ca2+]i was reduced significantly by 200 microM Cd2+ and 10 microM nimodipine, but was only slightly inhibited by 50 microM Ni2+. The largest amplitude decrease in [Ca2+]i was observed in the proximal apical dendrites with the amplitude of the Ca2+ change decreasing with further distance from the soma. 4. Whole cell recordings from acutely isolated hippocampal pyramidal neurons reveal a slowly inactivating Ca2+ current with similar voltage dependence and pharmacology to the hyperpolarization-induced decrease in [Ca2+]i. 5. The data suggest that a population of dihydropyridine-sensitive Ca2+ channels are active at resting membrane potentials and that this channel activation significantly contributes to the resting [Ca2+]i. These channels appear to be present throughout the neuron and may be located most densely in the proximal apical dendrites.


1974 ◽  
Vol 60 (3) ◽  
pp. 653-671
Author(s):  
D. B. SATTELLE

1. A mean resting potential of -53.3 (S.D. ±2.7) mV has been obtained for 23 neurones of the parietal and visceral ganglia of Limnaea stagnalis (L.). Changes in the resting potential of between 28 and 43 mV accompany tenfold changes in [K+0]. A modified constant-field equation accounts for the behaviour of most cells over the range of external potassium concentrations from 0-5 to 10.o mM/1. Mean values have been estimated for [K+1, 56.2 (S.D.± 9-0) mM/1 and PNa/PK, 0-117 (S.D.±0-028). 2. Investigations on the ionic basis of action potential generation have revealed two cell types which can be distinguished according to the behaviour of their action potentials in sodium-free Ringer. Sodium-sensitive cells are unable to support action potentials for more than 8-10 min in the absence of sodium. Sodium slopes of between 29 and 37 mV per decade change in [Na+0] have been found for these cells. Tetrodotoxin (5 x 10-5 M) usually blocks action potentials in these neurones. Calcium-free inger produces a marked reduction in the overshoot potential and calcium slopes of about 18 mV per decade change in [Ca2+o] are found. Manganous chloride only partially reduces the action potential overshoot in these cells at concentrations of 10 mM/l. 3. Sodium-insensitive neurones maintain action potentials in the absence of external sodium. Stimulation only slightly reduces the amplitude of the action potential under these conditions and such cells are readily accessible to potassium ions in the bathing medium. A calcium-slope of 29 mV per decade change in [Ca2+o] has been observed in these cells in the absence of external sodium. 4. It is concluded that both sodium and calcium ions can be involved in the generation of the action potential in neurones of Limnaea stagnate, their relative contribution varying in different cells.


2006 ◽  
Vol 95 (5) ◽  
pp. 3113-3128 ◽  
Author(s):  
Carl Gold ◽  
Darrell A. Henze ◽  
Christof Koch ◽  
György Buzsáki

Although extracellular unit recording is typically used for the detection of spike occurrences, it also has the theoretical ability to report about what are typically considered intracellular features of the action potential. We address this theoretical ability by developing a model system that captures features of experimentally recorded simultaneous intracellular and extracellular recordings of CA1 pyramidal neurons. We use the line source approximation method of Holt and Koch to model the extracellular action potential (EAP) voltage resulting from the spiking activity of individual neurons. We compare the simultaneous intracellular and extracellular recordings of CA1 pyramidal neurons recorded in vivo with model predictions for the same cells reconstructed and simulated with compartmental models. The model accurately reproduces both the waveform and the amplitude of the EAPs, although it was difficult to achieve simultaneous good matches on both the intracellular and extracellular waveforms. This suggests that accounting for the EAP waveform provides a considerable constraint on the overall model. The developed model explains how and why the waveform varies with electrode position relative to the recorded cell. Interestingly, each cell's dendritic morphology had very little impact on the EAP waveform. The model also demonstrates that the varied composition of ionic currents in different cells is reflected in the features of the EAP.


Author(s):  
Varshinie Pillai ◽  
Leslie Buck ◽  
Ebrahim Lari

Goldfish are one of a few species able to avoid cellular damage during month-long periods in severely hypoxic environments. By suppressing action potentials in excitatory glutamatergic neurons, the goldfish brain decreases its overall energy expenditure. Co-incident with reductions in O2 availability is a natural decrease in cellular reactive oxygen species (ROS) generation, which has been proposed to function as part of a low oxygen signal transduction pathway. Therefore, using live-tissue fluorescence microscopy, we found that ROS production decreased by 10% with the onset of anoxia in goldfish telencephalic brain slices. Employing whole-cell patch-clamp recording, we found that like severe hypoxia the ROS scavengers N-acetyl cysteine (NAC) and MitoTEMPO, added during normoxic periods, depolarized membrane potential (severe hypoxia -73.6 to – 61.4 mV; NAC -76.6 to -66.2 mV; and MitoTEMPO -71.5 mV to -62.5 mV) and increased whole-cell conductance (severe hypoxia 5.7 to 8.0 nS; NAC 6 nS to 7.5 nS; and MitoTEMPO 6.0 nS to 7.6 nS). Also, in a subset of active pyramidal neurons these treatments reduced action potential firing frequency (severe hypoxia 0.18 Hz to 0.03 Hz; NAC 0.27 Hz to 0.06 Hz and MitoTEMPO 0.35 Hz to 0.08 Hz ). Neither severe hypoxia nor ROS scavenging impacted action potential threshold. The addition of exogenous hydrogen peroxide could reverse the effects of the antioxidants. Taken together, this supports a role for a reduction in [ROS] as a low oxygen signal in goldfish brain.


Author(s):  
Ebrahim Lari ◽  
Leslie T. Buck

In most vertebrates, anoxia drastically reduces the production of the essential adenosine triphosphate (ATP) to power its many necessary functions, and consequently, cell death occurs within minutes. However, some vertebrates, such as the painted turtle (Chrysemys picta bellii), have evolved the ability to survive months without oxygen by simultaneously decreasing ATP supply and demand, surviving the anoxic period without any apparent cellular damage. The impact of anoxia on the metabolic function of painted turtles has received a lot of attention. Still, the impact of low temperature has received less attention and the interactive effect of anoxia and temperature even less. In the present study, we investigated the interactive impacts of reduced temperature and severe hypoxia on the electrophysiological properties of pyramidal neurons in painted turtle cerebral cortex. Our results show that an acute reduction in temperature from 20 to 5°C decreases membrane potential, action potential width and amplitude, and whole-cell conductance. Importantly, acute exposure to 5°C considerably slows membrane repolarization by voltage-gated K+ channels. Exposing pyramidal cells to severe hypoxia in addition to an acute temperature change slightly depolarized membrane potential but did not alter action potential amplitude or width and whole-cell conductance. These results suggest that acclimation to low temperatures, preceding severe environmental hypoxia, induces cellular responses in pyramidal neurons that facilitate survival under low oxygen concentration. In particular, our results show that temperature acclimation invokes a change in voltage-gated K+ channel kinetics that overcomes the acute inhibition of the channel.


Sign in / Sign up

Export Citation Format

Share Document