Neuronal NOX4 knockdown alleviates pathological tau-related alterations in a humanized mouse model of tauopathy

2020 ◽  
Author(s):  
Enrique Luengo ◽  
Paula Trigo-Alonso ◽  
Cristina Fernández-Mendívil ◽  
Ángel Nuñez ◽  
Marta del Campo ◽  
...  

AbstractApproximately 44 million people worldwide live with Alzheimer’s disease (AD) or a related form of dementia. Aggregates of the microtubule-associated protein tau are a common marker of these neurodegenerative diseases collectively termed as tauopathies. However, all therapeutic attempts based on tau have failed, suggesting that tau may only indicate a higher-level causal mechanism. For example, increasing levels of reactive oxygen species (ROS) may trigger protein aggregation or modulate protein degradation. Here we show that type 4 NADPH oxidase (NOX), the most abundant isoform of the only dedicated reactive oxygen producing enzyme family, is upregulated in dementia and AD patients and in a humanized mouse model of tauopathy. Both global knockout and neuronal knockdown of the Nox4 gene in mice, diminished the accumulation of pathological tau and positively modified established tauopathy by a mechanism that implicates modulation of the autophagy-lysosomal pathway (ALP). Moreover, neuronal-targeted NOX4 knockdown was sufficient to reduce neurotoxicity and prevented cognitive decline, suggesting a direct and causal role for neuronal NOX4. Thus, NOX4 is a previously unrecognized causal, mechanism-based target in tauopathies and blood-brain barrier permeable specific NOX4 inhibitors could have therapeutic potential even in established disease.Graphical abstract

2020 ◽  
Vol 8 (2) ◽  
pp. e001513
Author(s):  
Nahee Park ◽  
Kamal Pandey ◽  
Sei Kyung Chang ◽  
Ah-Young Kwon ◽  
Young Bin Cho ◽  
...  

BackgroundWell-characterized preclinical models are essential for immune-oncology research. We investigated the feasibility of our humanized mouse model for evaluating the long-term efficacy of immunotherapy and biomarkers.MethodsHumanized mice were generated by injecting human fetal cord blood-derived CD34+ hematopoietic stem cells to NOD-scid IL2rγnull (NSG) mice myeloablated with irradiation or busulfan. The humanization success was defined as a 25% or higher ratio of human CD45+ cells to mice peripheral blood mononuclear cells.ResultsBusulfan was ultimately selected as the appropriate myeloablative method because it provided a higher success rate of humanization (approximately 80%) and longer survival time (45 weeks). We proved the development of functional T cells by demonstrating the anticancer effect of the programmed cell death-1 (PD-1) inhibitor in our humanized mice but not in non-humanized NSG mice. After confirming the long-lasting humanization state (45 weeks), we further investigated the response durability of the PD-1 inhibitor and biomarkers in our humanized mice. Early increase in serum tumor necrosis factor α levels, late increase in serum interleukin 6 levels and increase in tumor-infiltrating CD8+ T lymphocytes correlated more with a durable response over 60 days than with a non-durable response.ConclusionsOur CD34+ humanized mouse model is the first in vivo platform for testing the long-term efficacy of anticancer immunotherapies and biomarkers, given that none of the preclinical models has ever been evaluated for such a long duration.


2015 ◽  
Vol 39 (6) ◽  
pp. 649-656 ◽  
Author(s):  
Kristina M. DiFranco ◽  
Nadine Johnson-Farley ◽  
Joseph R. Bertino ◽  
David Elson ◽  
Brian A. Vega ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1106
Author(s):  
Rayan Bou-Fakhredin ◽  
Batoul Dia ◽  
Hilda E. Ghadieh ◽  
Stefano Rivella ◽  
Maria Domenica Cappellini ◽  
...  

Oxidative damage by reactive oxygen species (ROS) is one of the main contributors to cell injury and tissue damage in thalassemia patients. Recent studies suggest that ROS generation in non-transfusion-dependent (NTDT) patients occurs as a result of iron overload. Among the different sources of ROS, the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes and cytochrome P450 (CYP450) have been proposed to be major contributors for oxidative stress in several diseases. However, the sources of ROS in patients with NTDT remain poorly understood. In this study, Hbbth3/+ mice, a mouse model for β-thalassemia, were used. These mice exhibit an unchanged or decreased expression of the major NOX isoforms, NOX1, NOX2 and NOX4, when compared to their C57BL/6 control littermates. However, a significant increase in the protein synthesis of CYP4A and CYP4F was observed in the Hbbth3/+ mice when compared to the C57BL/6 control mice. These changes were paralleled by an increased production of 20-hydroxyeicosatetraenoic acid (20-HETE), a CYP4A and CYP4F metabolite. Furthermore, these changes corroborate with onset of ROS production concomitant with liver injury. To our knowledge, this is the first report indicating that CYP450 4A and 4F-induced 20-HETE production mediates reactive oxygen species overgeneration in Hbbth3/+ mice through an NADPH-dependent pathway.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A15-A15
Author(s):  
Fabiane Sônego ◽  
Gaelle Martin ◽  
Chloé Beuraud ◽  
Audrey Beringer ◽  
Yacine Cherifi ◽  
...  

BackgroundImmuno-intervention through targeting of activating and inhibitory immune checkpoints (ICP), has shown promising results in the clinic over the last years. To facilitate these researches, mouse models expressing humanized ICP instead of their mouse counterparts were developed. Herein, we describe a novel CD28 humanized mouse model (hCD28 model), designed to test compounds targeting human CD28 (hCD28).MethodsHuman and mouse CD28 (mCD28) have different signalling responses, with hCD28 being known for inducing higher levels of pro-inflammatory cytokines upon stimulation with ligands/superagonists. This can be explained by the expression of CD28i, a hCD28 amplifier isoform which is not found in mouse. Additionally, evidences suggested that the different signalling between human and mCD28 relies on one amino acid change in the intracellular domain (ICD).1 Because the hCD28 model was developed to assess hCD28-targeting therapeutics, we decided to keep the expression of both canonical and CD28i isoforms to avoid undermining the biological effects of the testing antibodies. Although keeping the human ICD could favour the evaluation of cytokine production and therefore the safety of the test therapeutics, we decided to keep the mouse ICD to enable a proper interaction of CD28 with its signalling partners, allowing a physiological stimulation of CD28 in efficacy studies.Results hCD28 mice express hCD28 on T cells and the frequency of CD3 T cells is comparable in both WT and hCD28 mice. Stimulation of hCD28 mice-isolated T cells with hCD28 ligands and agonist antibodies resulted in T cell proliferation and cytokine production, suggesting that hCD28 is functional in mouse cells. MC38 uptake rate and kinetic of growth were comparable in WT and hCD28 mice, suggesting no major defect in the immune response in the hCD28 mice. Importantly, splenocytes and tumor draining lymph nodes cells isolated from tumor-bearing hCD28 mice showed higher production of IL-2 and IFN-gamma upon in vitro re-challenged with MC38 when compared to WT cells. Since the frequency of CD3 cells (Treg, CD4+ and CD8+) is comparable to WT mice, this could be explained by the expression of the amplifier CD28i isoform, which is absent in WT mice.ConclusionsThe hCD28 model described here supports the efficacy assessment of hCD28-targeting biologics, enabling PK/PD studies as hCD28 expression levels and pattern are physiological. However, after careful consideration of the CD28 biology, we decided to keep the mouse ICD, although it triggers lower pro-inflammatory cytokine production than CD28 human ICD. As such, this model is not suitable for toxicology/safety studies.ReferencePorciello N, Grazioli P, Campese AF, et al. A non-conserved amino acid variant regulates differential signalling between human and mouse CD28. Nat Commun 2018; 9:1–16.


2014 ◽  
Vol 192 (7) ◽  
pp. 3280-3288 ◽  
Author(s):  
Günther Baravalle ◽  
Alexandra M. Greer ◽  
Taylor N. LaFlam ◽  
Jeoung-Sook Shin

Sign in / Sign up

Export Citation Format

Share Document