scholarly journals The microbiota plays a critical role in the reactivity of lung immune components to innate ligands

2020 ◽  
Author(s):  
Quentin Marquant ◽  
Daphné Laubreton ◽  
Carole Drajac ◽  
Elliot Mathieu ◽  
Edwige Bouguyon ◽  
...  

AbstractThe microbiota contributes to shaping efficient and safe immune defenses in the gut. However, little is known about the role of the microbiota in the education of pulmonary innate immune responses. Here, we tested whether the endogenous microbiota can modulate reactivity of pulmonary tissue to pathogen stimuli by comparing the response of specific pathogen-free (SPF) and germ-free (GF) mice. Using SPF and GF mice intranasally exposed to lipopolysaccharide (LPS), a component of Gram-negative bacteria, we observed earlier and greater inflammation in the pulmonary compartment of GF mice than that of SPF mice. Toll-like receptor 4 (TLR4) was more abundantly expressed in the lungs of GF mice than those of SPF mice at steady state, which could predispose the innate immunity of GF mice to strongly react to environmental stimuli. Lung explants were stimulated with different TLR agonists or infected with the human airways pathogen, respiratory syncytial virus (RSV), resulting in greater inflammation under almost all conditions for the GF explants. Finally, alveolar macrophages (AM) from GF mice presented a higher innate immune response upon RSV infection than those of SPF mice. Overall, these data suggest that the presence of microbiota in SPF mice induced a process of innate immune tolerance in the lungs by a mechanism which remains to be elucidated. Our study represents a step forward to establishing the link between the microbiota and the immune reactivity of the lungs.Plain Language summaryMicrobiota represents an important partner of immunologic system at the interface between immune cells and epithelium. It is well known, notably in the gut, that the microbiota contributes in shaping efficient and safe defenses. However, little is known about the role of the microbiota in the education of pulmonary innate immune responses. In this study, we postulate that endogenous microbiota could dampen an excessive reactivity of pulmonary tissue to external stimuli. Thus, we sought to study the innate immune reaction switched on by viral or bacterial ligands in respiratory tract cells coming from mice with or without microbiota (germ-free condition, GF). Altogether, our results show a higher inflammatory reaction in GF condition. This study represents a step forward to better establish the link between the microbiota and the reactivity of the lung tissue. Not only these data demonstrate that the microbiota educates the pulmonary innate immune system, but also contributes the emerging concept of using respiratory commensal bacteria as potential next-generation probiotics to prevent susceptibility to respiratory diseases.

PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e78849 ◽  
Author(s):  
Thangam Sudha Velayutham ◽  
Deepthi Kolli ◽  
Teodora Ivanciuc ◽  
Roberto P. Garofalo ◽  
Antonella Casola

2010 ◽  
Vol 186 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Makoto Inoue ◽  
Yasuhiro Moriwaki ◽  
Tomohiro Arikawa ◽  
Yu-Hsun Chen ◽  
Young Joo Oh ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Huifang Zhu ◽  
Yan-Dong Tang ◽  
Guoqing Zhan ◽  
Chenhe Su ◽  
Chunfu Zheng

Poly (adenosine diphosphate-ribose) polymerases (PARPs) are a family of proteins responsible for transferring ADP-ribose groups to target proteins to initiate the ADP-ribosylation, a highly conserved and fundamental post-translational modification in all organisms. PARPs play important roles in various cellular functions, including regulating chromatin structure, transcription, replication, recombination, and DNA repair. Several studies have recently converged on the widespread involvement of PARPs and ADP-Ribosylation reaction in mammalian innate immunity. Here, we provide an overview of the emerging roles of PARPs family and ADP-ribosylation in regulating the host’s innate immune responses involved in cancers, pathogenic infections, and inflammations, which will help discover and design new molecular targets for cancers, pathogenic infections, and inflammations.


2021 ◽  
Author(s):  
Fabrice Cognasse ◽  
Kathryn Hally ◽  
Sebastien Fauteux-Daniel ◽  
Marie-Ange Eyraud ◽  
Charles-Antoine Arthaud ◽  
...  

AbstractAside from their canonical role in hemostasis, it is increasingly recognized that platelets have inflammatory functions and can regulate both adaptive and innate immune responses. The main topic this review aims to cover is the proinflammatory effects and side effects of platelet transfusion. Platelets prepared for transfusion are subject to stress injury upon collection, preparation, and storage. With these types of stress, they undergo morphologic, metabolic, and functional modulations which are likely to induce platelet activation and the release of biological response modifiers (BRMs). As a consequence, platelet concentrates (PCs) accumulate BRMs during processing and storage, and these BRMs are ultimately transfused alongside platelets. It has been shown that BRMs present in PCs can induce immune responses and posttransfusion reactions in the transfusion recipient. Several recent reports within the transfusion literature have investigated the concept of platelets as immune cells. Nevertheless, current and future investigations will face the challenge of encompassing the immunological role of platelets in the scope of transfusion.


2021 ◽  
Vol 10 (1) ◽  
pp. 24
Author(s):  
Ragnhild Inderberg Vestrum ◽  
Torunn Forberg ◽  
Birgit Luef ◽  
Ingrid Bakke ◽  
Per Winge ◽  
...  

The roles of host-associated bacteria have gained attention lately, and we now recognise that the microbiota is essential in processes such as digestion, development of the immune system and gut function. In this study, Atlantic cod larvae were reared under germ-free, gnotobiotic and conventional conditions. Water and fish microbiota were characterised by 16S rRNA gene analyses. The cod larvae’s transcriptional responses to the different microbial conditions were analysed by a custom Agilent 44 k oligo microarray. Gut development was assessed by transmission electron microscopy (TEM). Water and fish microbiota differed significantly in the conventional treatment and were dominated by different fast-growing bacteria. Our study indicates that components of the innate immune system of cod larvae are downregulated by the presence of non-pathogenic bacteria, and thus may be turned on by default in the early larval stages. We see indications of decreased nutrient uptake in the absence of bacteria. The bacteria also influence the gut morphology, reflected in shorter microvilli with higher density in the conventional larvae than in the germ-free larvae. The fact that the microbiota alters innate immune responses and gut morphology demonstrates its important role in marine larval development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yaoyao Xia ◽  
Yikun Li ◽  
Xiaoyan Wu ◽  
Qingzhuo Zhang ◽  
Siyuan Chen ◽  
...  

Iron fine-tunes innate immune responses, including macrophage inflammation. In this review, we summarize the current understanding about the iron in dictating macrophage polarization. Mechanistically, iron orchestrates macrophage polarization through several aspects, including cellular signaling, cellular metabolism, and epigenetic regulation. Therefore, iron modulates the development and progression of multiple macrophage-associated diseases, such as cancer, atherosclerosis, and liver diseases. Collectively, this review highlights the crucial role of iron for macrophage polarization, and indicates the potential application of iron supplementation as an adjuvant therapy in different inflammatory disorders relative to the balance of macrophage polarization.


Sign in / Sign up

Export Citation Format

Share Document