scholarly journals FANCM regulates repair pathway choice at stalled replication forks

2020 ◽  
Author(s):  
Arvind Panday ◽  
Nicholas A. Willis ◽  
Rajula Elango ◽  
Francesca Menghi ◽  
Erin E. Duffey ◽  
...  

SummaryConservative repair of stalled replication forks is important for the maintenance of a stable genome. However, the mechanisms that regulate repair pathway “choice” at stalled mammalian forks remain poorly understood. The Fanconi anemia complementation group M gene, FANCM, encodes a multi-domain scaffolding and motor protein that interacts with several distinct repair protein complexes at stalled forks. Here we use a chromosomally integrated reporter of stalled fork repair, in combination with defined mutations engineered within the endogenous Fancm gene in primary mammalian cells, to study how Fancm regulates stalled fork repair. We identify separation-of-function Fancm mutants, which reveal that distinct repair functions of FANCM are enacted by modular, molecularly separable scaffolding domains. These findings define FANCM as a key mediator of repair pathway choice at stalled replication forks and reveal its molecular mechanism. Notably, a mutation that inactivates the ATPase function of FANCM disables all FANCM-mediated repair functions and appears to “trap” FANCM at stalled forks. We find that Fancm null cells do not survive genetic inactivation of Brca1. This synthetic lethal interaction is recapitulated in Fancm ATPase-defective mutants. The ATPase function of FANCM may therefore represent a promising “druggable” target for therapy of BRCA1 mutant cancers.

2021 ◽  
Author(s):  
Arvind Panday ◽  
Nicholas A. Willis ◽  
Rajula Elango ◽  
Francesca Menghi ◽  
Erin E. Duffey ◽  
...  

2004 ◽  
Vol 323 (3) ◽  
pp. 831-837 ◽  
Author(s):  
Andrey Nikiforov ◽  
Maria Svetlova ◽  
Lioudmila Solovjeva ◽  
Lioudmila Sasina ◽  
Joseph Siino ◽  
...  

2005 ◽  
Vol 16 (12) ◽  
pp. 5551-5562 ◽  
Author(s):  
Eisuke Itakura ◽  
Isao Sawada ◽  
Akira Matsuura

ATR (ATM and Rad3-related), a PI kinase-related kinase (PIKK), has been implicated in the DNA structure checkpoint in mammalian cells. ATR associates with its partner protein ATRIP to form a functional complex in the nucleus. In this study, we investigated the role of the ATRIP coiled-coil domain in ATR-mediated processes. The coiled-coil domain of human ATRIP contributes to self-dimerization in vivo, which is important for the stable translocation of the ATR-ATRIP complex to nuclear foci that are formed after exposure to genotoxic stress. The expression of dimerization-defective ATRIP diminishes the maintenance of replication forks during treatment with replication inhibitors. By contrast, it does not compromise the G2/M checkpoint after IR-induced DNA damage. These results show that there are two critical functions of ATR-ATRIP after the exposure to genotoxic stress: maintenance of the integrity of replication machinery and execution of cell cycle arrest, which are separable and are achieved via distinct mechanisms. The former function may involve the concentrated localization of ATR to damaged sites for which the ATRIP coiled-coil motif is critical.


2007 ◽  
Vol 28 (1) ◽  
pp. 154-164 ◽  
Author(s):  
Ponnari Gottipati ◽  
Tobias N. Cassel ◽  
Linda Savolainen ◽  
Thomas Helleday

ABSTRACT Transcription can enhance recombination; this is a ubiquitous phenomenon from prokaryotes to higher eukaryotes. However, the mechanism of transcription-associated recombination in mammalian cells is poorly understood. Here we have developed a construct with a recombination substrate in which levels of recombination can be studied in the presence or absence of transcription. We observed a direct enhancement in recombination when transcription levels through the substrate were increased. This increase in homologous recombination following transcription is locus specific, since homologous recombination at the unrelated hprt gene is unaffected. In addition, we have shown that transcription-associated recombination involves both short-tract and long-tract gene conversions in mammalian cells, which are different from double-strand-break-induced recombination events caused by endonucleases. Transcription fails to enhance recombination in cells that are not in the S phase of the cell cycle. Furthermore, inhibition of transcription suppresses induction of recombination at stalled replication forks, suggesting that recombination may be involved in bypassing transcription during replication.


2020 ◽  
Author(s):  
Julie Rageul ◽  
Jennifer J. Park ◽  
Ping Ping Zeng ◽  
Eun-A Lee ◽  
Jihyeon Yang ◽  
...  

ABSTRACTProtecting replication fork integrity during DNA replication is essential for maintaining genome stability. Here, we report that SDE2, a PCNA-associated protein, plays a key role in maintaining active replication and counteracting replication stress by regulating the replication fork protection complex (FPC). SDE2 directly interacts with the FPC component TIMELESS (TIM) and enhances TIM stability and its localization to replication forks, thereby aiding the coordination of replisome progression. Like TIM deficiency, knockdown of SDE2 leads to impaired fork progression and stalled fork recovery, along with a failure to activate CHK1 phosphorylation. Moreover, loss of SDE2 or TIM results in an excessive MRE11-dependent degradation of reversed forks. Together, our study uncovers an essential role for SDE2 in maintaining genomic integrity by stabilizing the FPC and describes a new role for TIM in protecting stalled replication forks. We propose that TIM-mediated fork protection may represent a way to cooperate with BRCA-dependent fork stabilization.


Author(s):  
Shan Qiu ◽  
Guixing Jiang ◽  
Liping Cao ◽  
Jun Huang

During genome replication, replication forks often encounter obstacles that impede their progression. Arrested forks are unstable structures that can give rise to collapse and rearrange if they are not properly processed and restarted. Replication fork reversal is a critical protective mechanism in higher eukaryotic cells in response to replication stress, in which forks reverse their direction to form a Holliday junction-like structure. The reversed replication forks are protected from nuclease degradation by DNA damage repair proteins, such as BRCA1, BRCA2, and RAD51. Some of these molecules work cooperatively, while others have unique functions. Once the stress is resolved, the replication forks can restart with the help of enzymes, including human RECQ1 helicase, but restart will not be considered here. Here, we review research on the key factors and mechanisms required for the remodeling and protection of stalled replication forks in mammalian cells.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Julie Rageul ◽  
Jennifer J. Park ◽  
Ping Ping Zeng ◽  
Eun-A Lee ◽  
Jihyeon Yang ◽  
...  

Abstract Protecting replication fork integrity during DNA replication is essential for maintaining genome stability. Here, we report that SDE2, a PCNA-associated protein, plays a key role in maintaining active replication and counteracting replication stress by regulating the replication fork protection complex (FPC). SDE2 directly interacts with the FPC component TIMELESS (TIM) and enhances its stability, thereby aiding TIM localization to replication forks and the coordination of replisome progression. Like TIM deficiency, knockdown of SDE2 leads to impaired fork progression and stalled fork recovery, along with a failure to activate CHK1 phosphorylation. Moreover, loss of SDE2 or TIM results in an excessive MRE11-dependent degradation of reversed forks. Together, our study uncovers an essential role for SDE2 in maintaining genomic integrity by stabilizing the FPC and describes a new role for TIM in protecting stalled replication forks. We propose that TIM-mediated fork protection may represent a way to cooperate with BRCA-dependent fork stabilization.


2019 ◽  
Vol 218 (4) ◽  
pp. 1096-1107 ◽  
Author(s):  
Kimberly Rickman ◽  
Agata Smogorzewska

The replisome, the molecular machine dedicated to copying DNA, encounters a variety of obstacles during S phase. Without a proper response to this replication stress, the genome becomes unstable, leading to disease, including cancer. The immediate response is localized to the stalled replisome and includes protection of the nascent DNA. A number of recent studies have provided insight into the factors recruited to and responsible for protecting stalled replication forks. In response to replication stress, the SNF2 family of DNA translocases has emerged as being responsible for remodeling replication forks in vivo. The protection of stalled replication forks requires the cooperation of RAD51, BRCA1, BRCA2, and many other DNA damage response proteins. In the absence of these fork protection factors, fork remodeling renders them vulnerable to degradation by nucleases and helicases, ultimately compromising genome integrity. In this review, we focus on the recent progress in understanding the protection, processing, and remodeling of stalled replication forks in mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document