scholarly journals Uncovering the mesendoderm gene regulatory network through multi-omic data integration

2020 ◽  
Author(s):  
Camden Jansen ◽  
Kitt D. Paraiso ◽  
Jeff J. Zhou ◽  
Ira L. Blitz ◽  
Margaret B. Fish ◽  
...  

SummaryMesendodermal specification is one of the earliest events in embryogenesis, where cells first acquire distinct identities. Cell differentiation is a highly regulated process that involves the function of numerous transcription factors (TFs) and signaling molecules, which can be described with gene regulatory networks (GRNs). Cell differentiation GRNs are difficult to build because existing mechanistic methods are low-throughput, and high-throughput methods tend to be non-mechanistic. Additionally, integrating highly dimensional data comprised of more than two data types is challenging. Here, we use linked self-organizing maps to combine ChIP-seq/ATAC-seq with temporal, spatial and perturbation RNA-seq data from Xenopus tropicalis mesendoderm development to build a high resolution genome scale mechanistic GRN. We recovered both known and previously unsuspected TF-DNA/TF-TF interactions and validated through reporter assays. Our analysis provides new insights into transcriptional regulation of early cell fate decisions and provides a general approach to building GRNs using highly-dimensional multi-omic data sets.HighlightsBuilt a generally applicable pipeline to creating GRNs using highly-dimensional multi-omic data setsPredicted new TF-DNA/TF-TF interactions during mesendoderm developmentGenerate the first genome scale GRN for vertebrate mesendoderm and expanded the core mesendodermal developmental network with high fidelityDeveloped a resource to visualize hundreds of RNA-seq and ChIP-seq data using 2D SOM metaclusters.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mika J. Välimäki ◽  
Robert S. Leigh ◽  
Sini M. Kinnunen ◽  
Alexander R. March ◽  
Ana Hernández de Sande ◽  
...  

AbstractBackgroundPharmacological modulation of cell fate decisions and developmental gene regulatory networks holds promise for the treatment of heart failure. Compounds that target tissue-specific transcription factors could overcome non-specific effects of small molecules and lead to the regeneration of heart muscle following myocardial infarction. Due to cellular heterogeneity in the heart, the activation of gene programs representing specific atrial and ventricular cardiomyocyte subtypes would be highly desirable. Chemical compounds that modulate atrial and ventricular cell fate could be used to improve subtype-specific differentiation of endogenous or exogenously delivered progenitor cells in order to promote cardiac regeneration.MethodsTranscription factor GATA4-targeted compounds that have previously shown in vivo efficacy in cardiac injury models were tested for stage-specific activation of atrial and ventricular reporter genes in differentiating pluripotent stem cells using a dual reporter assay. Chemically induced gene expression changes were characterized by qRT-PCR, global run-on sequencing (GRO-seq) and immunoblotting, and the network of cooperative proteins of GATA4 and NKX2-5 were further explored by the examination of the GATA4 and NKX2-5 interactome by BioID. Reporter gene assays were conducted to examine combinatorial effects of GATA-targeted compounds and bromodomain and extraterminal domain (BET) inhibition on chamber-specific gene expression.ResultsGATA4-targeted compounds 3i-1000 and 3i-1103 were identified as differential modulators of atrial and ventricular gene expression. More detailed structure-function analysis revealed a distinct subclass of GATA4/NKX2-5 inhibitory compounds with an acetyl lysine-like domain that contributed to ventricular cells (%Myl2-eGFP+). Additionally, BioID analysis indicated broad interaction between GATA4 and BET family of proteins, such as BRD4. This indicated the involvement of epigenetic modulators in the regulation of GATA-dependent transcription. In this line, reporter gene assays with combinatorial treatment of 3i-1000 and the BET bromodomain inhibitor (+)-JQ1 demonstrated the cooperative role of GATA4 and BRD4 in the modulation of chamber-specific cardiac gene expression.ConclusionsCollectively, these results indicate the potential for therapeutic alteration of cell fate decisions and pathological gene regulatory networks by GATA4-targeted compounds modulating chamber-specific transcriptional programs in multipotent cardiac progenitor cells and cardiomyocytes. The compound scaffolds described within this study could be used to develop regenerative strategies for myocardial regeneration.


2020 ◽  
Author(s):  
Kira Allmeroth ◽  
Christine S. Kim ◽  
Andrea Annibal ◽  
Andromachi Pouikli ◽  
Carlos Andrés Chacón-Martínez ◽  
...  

AbstractStem cell differentiation is accompanied by an increase in mRNA translation. The rate of protein biosynthesis is influenced by the polyamines putrescine, spermidine, and spermine that are essential for cell growth and stem cell maintenance. However, the role of polyamines as endogenous effectors of stem cell fate and whether they act through translational control remains obscure. Here, we investigated the function of polyamines in stem cell fate decisions using hair follicle stem cell (HFSC) organoids. HFSCs showed lower translation rates than progenitor cells, and a forced suppression of translation by direct targeting of the ribosome or through specific depletion of natural polyamines elevated stemness. In addition, we identified N1-acetylspermidine as a novel parallel regulator of cell fate decisions, increasing proliferation without reducing translation. Overall, this study delineates the diverse routes of polyamine metabolism-mediated regulation of stem cell fate decisions.Key PointsLow mRNA translation rates characterize hair follicle stem cell (HFSC) stateDepletion of natural polyamines enriches HFSCs via reduced translationN1-acetylspermidine promotes HFSC state without reducing translationN1-acetylspermidine expands the stem cell pool through elevated proliferation


2018 ◽  
Vol 2 (20) ◽  
pp. 2589-2606 ◽  
Author(s):  
Chris Moore ◽  
Joanna L. Richens ◽  
Yasmin Hough ◽  
Deniz Ucanok ◽  
Sunir Malla ◽  
...  

Abstract The transcriptional repressors Gfi1(a) and Gfi1b are epigenetic regulators with unique and overlapping roles in hematopoiesis. In different contexts, Gfi1 and Gfi1b restrict or promote cell proliferation, prevent apoptosis, influence cell fate decisions, and are essential for terminal differentiation. Here, we show in primitive red blood cells (prRBCs) that they can also set the pace for cellular differentiation. In zebrafish, prRBCs express 2 of 3 zebrafish Gfi1/1b paralogs, Gfi1aa and Gfi1b. The recently identified zebrafish gfi1aa gene trap allele qmc551 drives erythroid green fluorescent protein (GFP) instead of Gfi1aa expression, yet homozygous carriers have normal prRBCs. prRBCs display a maturation defect only after splice morpholino-mediated knockdown of Gfi1b in gfi1aaqmc551 homozygous embryos. To study the transcriptome of the Gfi1aa/1b double-depleted cells, we performed an RNA-Seq experiment on GFP-positive prRBCs sorted from 20-hour-old embryos that were heterozygous or homozygous for gfi1aaqmc551, as well as wt or morphant for gfi1b. We subsequently confirmed and extended these data in whole-mount in situ hybridization experiments on newly generated single- and double-mutant embryos. Combined, the data showed that in the absence of Gfi1aa, the synchronously developing prRBCs were delayed in activating late erythroid differentiation, as they struggled to suppress early erythroid and endothelial transcription programs. The latter highlighted the bipotent nature of the progenitors from which prRBCs arise. In the absence of Gfi1aa, Gfi1b promoted erythroid differentiation as stepwise loss of wt gfi1b copies progressively delayed Gfi1aa-depleted prRBCs even further, showing that Gfi1aa and Gfi1b together set the pace for prRBC differentiation from hemangioblasts.


2019 ◽  
Vol 73 (4) ◽  
pp. 815-829.e7 ◽  
Author(s):  
Lin Guo ◽  
Lihui Lin ◽  
Xiaoshan Wang ◽  
Mingwei Gao ◽  
Shangtao Cao ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. SCI-20-SCI-20
Author(s):  
H. Leighton Grimes ◽  
Singh Harinder ◽  
Andre Olsson ◽  
Nathan Salomonis ◽  
Bruce J. Aronow ◽  
...  

Abstract Single-cell RNA-Seq has the potential to become a dominant approach in probing diverse and complex developmental compartments. Its unbiased and comprehensive nature could enable developmental ordering of cellular and regulatory gene hierarchies without prior knowledge. To test general utility we performed single-cell RNA-seq of murine hematopoietic progenitors focusing on the myeloid developmental hierarchy. Using novel unsupervised clustering analysis, ICDS, we correctly ordered known hierarchical states as well as revealed rare intermediates. Regulatory state analysis suggested that the transcription factors Gfi1 and Irf8 function antagonistically to control homeostatic neutrophil and macrophage production, respectively. This prediction was validated by complementary genetic and genomic experiments in granulocyte-macrophage progenitors. Using knock-in reporters for Gfi1 and Irf8 and clonogenic analyses coupled with single-cell RNA-seq we distinguished regulatory states of bi-potential progenitors from their lineage specifying or committed progeny. Thus single-cell RNA-Seq is a powerful developmental tool to characterize hierarchical and rare cellular states along with the regulators that control their dynamics. Disclosures No relevant conflicts of interest to declare.


mSystems ◽  
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Jie Tan ◽  
John H. Hammond ◽  
Deborah A. Hogan ◽  
Casey S. Greene

ABSTRACT The quantity and breadth of genome-scale data sets that examine RNA expression in diverse bacterial and eukaryotic species are increasing more rapidly than for curated knowledge. Our ADAGE method integrates such data without requiring gene function, gene pathway, or experiment labeling, making practical its application to any large gene expression compendium. We built a Pseudomonas aeruginosa ADAGE model from a diverse set of publicly available experiments without any prespecified biological knowledge, and this model was accurate and predictive. We provide ADAGE results for the complete P. aeruginosa GeneChip compendium for use by researchers studying P. aeruginosa and source code that facilitates ADAGE’s application to other species and data types. The increasing number of genome-wide assays of gene expression available from public databases presents opportunities for computational methods that facilitate hypothesis generation and biological interpretation of these data. We present an unsupervised machine learning approach, ADAGE (analysis using denoising autoencoders of gene expression), and apply it to the publicly available gene expression data compendium for Pseudomonas aeruginosa. In this approach, the machine-learned ADAGE model contained 50 nodes which we predicted would correspond to gene expression patterns across the gene expression compendium. While no biological knowledge was used during model construction, cooperonic genes had similar weights across nodes, and genes with similar weights across nodes were significantly more likely to share KEGG pathways. By analyzing newly generated and previously published microarray and transcriptome sequencing data, the ADAGE model identified differences between strains, modeled the cellular response to low oxygen, and predicted the involvement of biological processes based on low-level gene expression differences. ADAGE compared favorably with traditional principal component analysis and independent component analysis approaches in its ability to extract validated patterns, and based on our analyses, we propose that these approaches differ in the types of patterns they preferentially identify. We provide the ADAGE model with analysis of all publicly available P. aeruginosa GeneChip experiments and open source code for use with other species and settings. Extraction of consistent patterns across large-scale collections of genomic data using methods like ADAGE provides the opportunity to identify general principles and biologically important patterns in microbial biology. This approach will be particularly useful in less-well-studied microbial species. IMPORTANCE The quantity and breadth of genome-scale data sets that examine RNA expression in diverse bacterial and eukaryotic species are increasing more rapidly than for curated knowledge. Our ADAGE method integrates such data without requiring gene function, gene pathway, or experiment labeling, making practical its application to any large gene expression compendium. We built a Pseudomonas aeruginosa ADAGE model from a diverse set of publicly available experiments without any prespecified biological knowledge, and this model was accurate and predictive. We provide ADAGE results for the complete P. aeruginosa GeneChip compendium for use by researchers studying P. aeruginosa and source code that facilitates ADAGE’s application to other species and data types. Author Video: An author video summary of this article is available.


2021 ◽  
Author(s):  
Rachel E. Brown ◽  
Justin Jacobse ◽  
Shruti A. Anant ◽  
Koral M. Blunt ◽  
Bob Chen ◽  
...  

Aberrant epithelial differentiation and regeneration pathways contribute to colon pathologies including inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). MTG16 (also known as CBFA2T3) is a transcriptional corepressor expressed in the colonic epithelium. MTG16 interaction partners include E box-binding basic helix-loop-helix transcription factors (E proteins). MTG16-deficient mice exhibit worse colitis and increased tumor burden in inflammatory carcinogenesis. In this study, we sought to understand the role of MTG16 in colonic epithelial homeostasis and the mechanisms by which MTG16 protects the epithelium in colitis and CAC. We demonstrated that MTG16 deficiency enabled enteroendocrine cell differentiation from secretory precursor cells at the expense of goblet cells. Transcriptomic analysis implicated dysregulated E protein function in MTG16-deficient colon crypts. Using a novel mouse model with a point mutation that disrupts MTG16:E protein complex formation (Mtg16P209T), we established that enteroendocrine:goblet cell balance was dependent on MTG16:E protein interactions and that the shift in lineage allocation was associated with enhanced expression of Neurog3, the central driver of enteroendocrine lineage specification. Furthermore, Mtg16 was upregulated in the previously described Ascl2+, de-differentiating cells that replenish the stem cell compartment in response to colon injury. Mtg16 expression was also increased in dextran sulfate sodium (DSS)-treated mouse colon crypts and in IBD patients compared to unaffected controls. We determined that the effects of MTG16 in regeneration are also dependent on its repression of E proteins, as the colonic epithelium failed to regenerate following DSS-induced injury in our novel mutant mouse model. Finally, we revealed that uncoupling MTG16:E protein interactions contributes to the enhanced tumorigenicity in Mtg16-/- colon in the azoxymethane(AOM)/DSS-induced model of CAC. Collectively, our results demonstrate that MTG16, via its repression of E protein targets, is a key regulator of cell fate decisions during colonic differentiation and regeneration.


2018 ◽  
Author(s):  
Steffen Rulands ◽  
Heather J Lee ◽  
Stephen J Clark ◽  
Christof Angermueller ◽  
Sébastien A Smallwood ◽  
...  

SummaryPluripotency is accompanied by the erasure of parental epigenetic memory with naïve pluripotent cells exhibiting global DNA hypomethylation both in vitro and in vivo. Exit from pluripotency and priming for differentiation into somatic lineages is associated with genome-wide de novo DNA methylation. We show that during this phase, coexpression of enzymes required for DNA methylation turnover, DNMT3s and TETs, promotes cell-to-cell variability in this epigenetic mark. Using a combination of single-cell sequencing and quantitative biophysical modelling, we show that this variability is associated with coherent, genome-scale, oscillations in DNA methylation with an amplitude dependent on CpG density. Analysis of parallel single-cell transcriptional and epigenetic profiling provides evidence for oscillatory dynamics both in vitro and in vivo. These observations provide fresh insights into the emergence of epigenetic heterogeneity during early embryo development, indicating that dynamic changes in DNA methylation might influence early cell fate decisions.HighlightsCo-expression of DNMT3s and TETs drive genome-scale oscillations of DNA methylationOscillation amplitude is greatest at a CpG density characteristic of enhancersCell synchronisation reveals oscillation period and link with primary transcriptsMultiomic single-cell profiling provides evidence for oscillatory dynamics in vivo


Blood ◽  
2021 ◽  
Author(s):  
Julie A I Thoms ◽  
Peter Truong ◽  
Shruthi Subramanian ◽  
Kathy Knezevic ◽  
Gregory Harvey ◽  
...  

Changes in gene regulation and expression govern orderly transitions from hematopoietic stem cells to terminally differentiated blood cell types. These transitions are disrupted during leukemic transformation but knowledge of the gene regulatory changes underpinning this process is elusive. We hypothesised that identifying core gene regulatory networks in healthy hematopoietic and leukemic cells could provide insights into network alterations that perturb cell state transitions. A heptad of transcription factors (LYL1, TAL1, LMO2, FLI1, ERG, GATA2, RUNX1) bind key hematopoietic genes in human CD34+ haematopoietic stem and progenitor cells (HSPCs) and have prognostic significance in acute myeloid leukemia (AML). These factors also form a densely interconnected circuit by binding combinatorially at their own, and each other's, regulatory elements. However, their mutual regulation during normal haematopoiesis and in AML cells, and how perturbation of their expression levels influences cell fate decisions remains unclear. Here, we integrated bulk and single cell data and found that the fully connected heptad circuit identified in healthy HSPCs persists with only minor alterations in AML, and that chromatin accessibility at key heptad regulatory elements was predictive of cell identity in both healthy progenitors and in leukemic cells. The heptad factors GATA2, TAL1 and ERG formed an integrated sub-circuit that regulates stem cell to erythroid transition in both healthy and leukemic cells. Components of this triad could be manipulated to facilitate erythroid transition providing a proof of concept that such regulatory circuits could be harnessed to promote specific cell type transitions and overcome dysregulated haematopoiesis.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Sumin Jang ◽  
Sandeep Choubey ◽  
Leon Furchtgott ◽  
Ling-Nan Zou ◽  
Adele Doyle ◽  
...  

The complexity of gene regulatory networks that lead multipotent cells to acquire different cell fates makes a quantitative understanding of differentiation challenging. Using a statistical framework to analyze single-cell transcriptomics data, we infer the gene expression dynamics of early mouse embryonic stem (mES) cell differentiation, uncovering discrete transitions across nine cell states. We validate the predicted transitions across discrete states using flow cytometry. Moreover, using live-cell microscopy, we show that individual cells undergo abrupt transitions from a naïve to primed pluripotent state. Using the inferred discrete cell states to build a probabilistic model for the underlying gene regulatory network, we further predict and experimentally verify that these states have unique response to perturbations, thus defining them functionally. Our study provides a framework to infer the dynamics of differentiation from single cell transcriptomics data and to build predictive models of the gene regulatory networks that drive the sequence of cell fate decisions during development.


Sign in / Sign up

Export Citation Format

Share Document