maturation defect
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 16)

H-INDEX

19
(FIVE YEARS 2)

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3257-3257
Author(s):  
Wenqing Wang ◽  
Andrew Devilbiss ◽  
Martin Arreola ◽  
Thomas Mathews ◽  
Misty Martin-Sandoval ◽  
...  

Abstract Reticular Dysgenesis (RD) is a particularly grave form of severe combined immunodeficiency (SCID), characterized by maturation arrest of both myeloid and lymphoid lineages paired with sensorineural hearing loss. RD is caused by biallelic mutations in the mitochondrial enzyme adenylate kinase 2 (AK2). AK2 catalyzes the phosphorylation of adenosine monophosphate (AMP) to adenosine diphosphate (ADP) in the mitochondrial intermembrane space. Using a CRISPR/Cas9 AK2 biallelic knock out model in human hematopoietic stem and progenitor cells (HSPCs), we have shown that AK2 -/- HSPCs mimic the neutrophil maturation defect in RD patients. Mitochondrial respiration is compromised in AK2 -/- HSPCs, which leads to a decreased NAD +/NADH ratio resulting in reductive stress. Metabolomics analysis by LC-MS/MS showed a significant accumulation of AMP, along with increased AMP/ADP and AMP/ATP ratios in AK2 -/- HSPCs, suggesting that purine metabolism is compromised by AK2 deficiency. Purine metabolism defects, such as deficiencies in adenosine deaminase (ADA) and purine nucleotide phosphorylase (PNP), have long been recognized as a cause of SCID. Furthermore, pharmacological interference with purine metabolism is a highly effective antiproliferative strategy in cancer therapy. In this study, we sought to investigate whether impaired purine metabolism contributes to the myelopoietic defect caused by AK2 deficiency. Results We explored how purine metabolism affects myelopoiesis by differentiating HSPCs in media containing no nucleosides (nucleoside-), mixed nucleosides (nucleoside+) or adenosine only (adenosine+). We observed no difference in proliferation or neutrophil maturation between nucleosides- and nucleoside+ media for both control and AK2 -/- HSPCs, suggesting that AK2 -/- HSPCs do not rely on exogenous nucleosides. Interestingly, control HSPCs cultured in adenosine+ media showed severe proliferation and neutrophil maturation defects that mimic AK2 deficiency, suggesting that purine imbalance is detrimental to myelopoiesis. Previous metabolomics analysis showed a significant accumulation of inosine monophosphate (IMP) in AK2 -/- HSPCs. Since IMP can be produced through AMP deamination by AMPD, we asked whether the IMP accumulation in AK2 -/- HSPCs is caused by converting excess AMP to IMP. An LC-MS/MS analysis showed that AMPD inhibitor (AMPDi) treatment significantly lowered IMP levels and increased AMP levels in AK2 -/- HSPCs, indicating that AMP deamination is a major source of IMP accumulation in AK2 -/- HSPCs. Furthermore, AMPDi treatment did not improve, but rather slightly aggravated neutrophil differentiation in AK2 -/- HSPCs, suggesting that the AK2 -/- neutrophil maturation defect is not caused by IMP accumulation. This raises the possibility that AK2 -/- HSPCs employ AMP deamination as a mechanism to curtail the toxicity of excess AMP. Since purine is a building block of RNA, and ribosomal RNA (rRNA) constitutes >85% of cellular RNA content, we asked whether rRNA synthesis is compromised by AK2 deficiency. Pyronin Y staining showed a significant decrease in rRNA content in AK2 -/- HSPCs. Nascent peptide synthesis rate was also decreased in AK2 -/- HSPCs, as quantified by OP-puromycin uptake. These findings are corroborated by RNA-seq analysis of AK2 -/- and control HSPCs, which showed that ribosomal subunits, ribosomal biogenesis and ribonucleoprotein complex assembly are among the top down-regulated pathways. The data suggest that defective purine metabolism in AK2 -/- HSPCs impairs ribosomal biogenesis and protein synthesis. Conclusion Our studies showed that purine imbalance in HSPCs impairs myeloid proliferation and neutrophil maturation. AK2 depletion in HSPCs leads to AMP accumulation and defective ribosomal biogenesis. AK2 -/- HSPCs convert excess AMP to IMP, possibly as a means to mitigate AMP toxicity. However, AMP deamination activities alone are not sufficient to lower AMP levels to those of control HSPCs. We are currently testing whether boosting 5'-nucleotidase activities (cNIA, cN1B and cNII) in AK2 -/- HSPCs can decrease AMP levels and rescue the neutrophil maturation defect. As purine metabolic defects are associated with diverse immune and non-immune abnormalities, further understanding of how purine metabolism governs differentiation of human HSPCs will enable us to develop novel therapeutic strategies for RD and other purine disorders. Disclosures Porteus: CRISPR Therapeutics: Current equity holder in publicly-traded company; Allogene Therapeutics: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Versant Ventures: Consultancy; Ziopharm: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Graphite Bio: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees. Morrison: Garuda Therapeutics: Other: founder and SAB member ; Kojin Therapeutics: Other: SAB member ; Frequency Therapeutics: Other: SAB member ; Ona Terapeutics: Other: SAB member ; Protein Fluidics: Other: SAB member .


iScience ◽  
2021 ◽  
Vol 24 (11) ◽  
pp. 103253
Author(s):  
Ayumi Yamada ◽  
Takae Hirasawa ◽  
Kayako Nishimura ◽  
Chikako Shimura ◽  
Naomi Kogo ◽  
...  

iScience ◽  
2021 ◽  
pp. 102741
Author(s):  
Ayumi Yamada ◽  
Takae Hirasawa ◽  
Kayako Nishimura ◽  
Chikako Shimura ◽  
Naomi Kogo ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Moumita Datta ◽  
Ori Staszewski

Abstract Objective Histone acetylation is an important mechanism in the regulation of gene expression and plays a crucial role in both cellular development and cellular response to external or internal stimuli. One key aspect of this form of regulation is that acetylation marks can be added and removed from sites of regulation very quickly through the activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs). The activity of both HATs and HDACs has been shown to be important for both physiological hematopoiesis as well as during development of hematological neoplasia, such as lymphomas. In the present study we analyzed the effect of knockout of the two HDACs, Hdac1 and Hdac2 in cells expressing the fractalkine receptor (Cx3cr1) on lymphocyte development. Results We report data showing a maturation defect in mice harboring a Cx3cr1 dependent knockout of Hdac1 and 2. Furthermore, we report that these mice develop a T-cell neoplasia at about 4–5 months of age, suggesting that a Cx3cr1 expressing subpopulation of immature T-cells gives rise to T-cell lymphomas in the combined absence of Hdac1 and Hdac2.


2021 ◽  
pp. jcs.253914
Author(s):  
Bartika Ghoshal ◽  
Edouard Bertrand ◽  
Suvendra N. Bhattacharyya

MicroRNAs, the tiny regulators of gene expression, can be transferred between neighbouring cells via Extracellular Vesicles (EV) to control the expression of genes in both donor and recipient cells. How the EV-derived miRNAs get internalized and become functional in target cells is an unresolved question. We have expressed liver specific microRNA, miR-122, in non-hepatic cells for packaging in the released EVs. With these EVs, we have followed the trafficking of miR-122 to recipient HeLa cells that otherwise don't express this miRNA. We found that EV-associated miR-122 are primarily single stranded and, to become functional, get loaded onto the recipient cell Ago proteins without requiring host Dicer1. Following endocytosis, EV-associated miR-122 get loaded onto the host cell Ago on the endosomal membrane where the release of internalized miRNAs occurs in a pH-dependent manner facilitating the formation of the exogenous miRNP pool in the recipient cells. Endosome maturation defect affects EV-mediated entry of exogeneous miRNAs in mammalian cells.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anne-Sophie Cloos ◽  
Laura G. M. Daenen ◽  
Mauriane Maja ◽  
Amaury Stommen ◽  
Juliette Vanderroost ◽  
...  

Familial hypobetalipoproteinemia is a metabolic disorder mainly caused by mutations in the apolipoprotein B gene. In its homozygous form it can lead without treatment to severe ophthalmological and neurological manifestations. In contrast, the heterozygous form is generally asymptomatic but associated with a low risk of cardiovascular disease. Acanthocytes or thorny red blood cells (RBCs) are described for both forms of the disease. However, those morphological changes are poorly characterized and their potential consequences for RBC functionality are not understood. Thus, in the present study, we asked whether, to what extent and how acanthocytes from a patient with heterozygous familial hypobetalipoproteinemia could exhibit altered RBC functionality. Acanthocytes represented 50% of the total RBC population and contained mitoTracker-positive surface patches, indicating the presence of mitochondrial fragments. While RBC osmotic fragility, calcium content and ATP homeostasis were preserved, a slight decrease of RBC deformability combined with an increase of intracellular free reactive oxygen species were observed. The spectrin cytoskeleton was altered, showing a lower density and an enrichment in patches. At the membrane level, no obvious modification of the RBC membrane fatty acids nor of the cholesterol content were detected but the ceramide species were all increased. Membrane stiffness and curvature were also increased whereas transversal asymmetry was preserved. In contrast, lateral asymmetry was highly impaired showing: (i) increased abundance and decreased functionality of sphingomyelin-enriched domains; (ii) cholesterol enrichment in spicules; and (iii) ceramide enrichment in patches. We propose that oxidative stress induces cytoskeletal alterations, leading to increased membrane stiffness and curvature and impaired lipid lateral distribution in domains and spicules. In addition, ceramide- and spectrin-enriched patches could result from a RBC maturation defect. Altogether, the data indicate that acanthocytes are associated with cytoskeletal and membrane lipid lateral asymmetry alterations, while deformability is only mildly impaired. In addition, familial hypobetalipoproteinemia might also affect RBC precursors leading to disturbed RBC maturation. This study paves the way for the potential use of membrane biophysics and lipid vital imaging as new methods for diagnosis of RBC disorders.


2020 ◽  
Vol 103 (2) ◽  
pp. 183-194
Author(s):  
Jiang Sun ◽  
Yonggang Lu ◽  
Kaori Nozawa ◽  
Zoulan Xu ◽  
Akane Morohoshi ◽  
...  

Abstract Developing a safe and effective male contraceptive remains a challenge in the field of medical science. Molecules that selectively target the male reproductive tract and whose targets are indispensable for male reproductive function serve among the best candidates for a novel non-hormonal male contraceptive method. To determine the function of these genes in vivo, mutant mice carrying disrupted testis- or epididymis-enriched genes were generated by zygote microinjection or electroporation of the CRISPR/Cas9 components. Male fecundity was determined by consecutively pairing knockout males with wild-type females and comparing the fecundity of wild-type controls. Phenotypic analyses of testis appearance and weight, testis and epididymis histology, and sperm movement were further carried out to examine any potential spermatogenic or sperm maturation defect in mutant males. In this study, we uncovered 13 testis- or epididymis-enriched evolutionarily conserved genes that are individually dispensable for male fertility in mice. Owing to their dispensable nature, it is not feasible to use these targets for the development of a male contraceptive.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Qiong Xing ◽  
Ruyi Wang ◽  
Beili Chen ◽  
Lin Li ◽  
Hong Pan ◽  
...  

Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 382 ◽  
Author(s):  
Özlem Okutman ◽  
Cem Demirel ◽  
Firat Tülek ◽  
Veronique Pfister ◽  
Umut Büyük ◽  
...  

In vitro fertilization (IVF) involves controlled ovarian hyperstimulation using hormones to produce large numbers of oocytes. The success of IVF is tightly linked to the availability of mature oocytes. In most cases, about 70% to 80% of the oocytes are mature at the time of retrieval, however, in rare instances, all of them may be immature, implying that they were not able to reach the metaphase II (MII) stage. The failure to obtain any mature oocytes, despite a well conducted ovarian stimulation in repeated cycles is a very rare cause of primary female infertility, for which the underlying suspected genetic factors are still largely unknown. In this study, we present the whole exome sequencing analysis of a consanguineous Turkish family comprising three sisters with a recurrent oocyte maturation defect. Analysis of the data reveals a homozygous splice site mutation (c.1775-3C>A) in the zona pellucida glycoprotein 1 (ZP1) gene. Minigene experiments show that the mutation causes the retention of the intron 11 sequence between exon 11 and exon 12, resulting in a frameshift and the likely production of a truncated protein.


2020 ◽  
Author(s):  
Qiong Xing ◽  
Ruyi Wang ◽  
Beili Chen ◽  
Lin Li ◽  
Hong Pan ◽  
...  

Abstract Purpose: Variations in many genes may lead to the occurrence of oocyte maturation defects. To investigate the genetic basis of oocyte maturation defects, we performed clinical and genetic analysis of a pedigree. Methods: The proband with oocyte maturation defect-2 receiving ovulation induction therapy and her parents were selected for clinical detection, whole exome sequencing and Sanger sequencing. One unrelated healthy woman received ovulation induction therapy as control. Mutations were assessed after frequency screening of public exome databases. Then homozygous variants shared by the proband and her parents were selected. Results: Arrest of oocytes maturation was observed. A new missense mutation in TUBB8 (TUBB8: NM_177987: exon 2: c. C161T: p. A54V) was identified, which was shown to be rare compared with public databases. The variant was highly conserved among primates, and was suggested to be deleterious by online software prediction. Conclusions: The homozygote of this variant (TUBB8: NM_ 177987: exon 2:c.C161T: p.A54V) might affect spindle assembly, cause arrest of oocyte maturation and lead to oocyte maturation defect-2.


Sign in / Sign up

Export Citation Format

Share Document