scholarly journals Influence of upper limb training and analyzed muscles on estimate of physical activity during cereal grinding using saddle quern and rotary quern

2020 ◽  
Author(s):  
Michal Struška ◽  
Martin Hora ◽  
Thomas R. Rocek ◽  
Vladimír Sládek

AbstractExperimental grinding has been used to study the relationship between human humeral robusticity and cereal grinding in the early Holocene. However, such replication studies raise two questions regarding the robusticity of the results: whether female nonathletes used in previous research are sufficiently comparable to early agricultural females, and whether previous analysis of muscle activation of only four upper limb muscles is sufficient to capture the stress of cereal grinding on upper limb bones. We test the influence of both of these factors. Electromyographic activity of eight upper limb muscles was recorded during cereal grinding in an athletic sample of 10 female rowers and a nonathletic sample of 25 females and analyzed using both an eight- and four-muscle model. Athletes had lower activation than nonathletes in the majority of measured muscles, but most of these differences were non-significant. Furthermore, both athletes and nonathletes had lower muscle activation during saddle quern grinding than rotary quern grinding suggesting that the nonathletic sample can be used to model early agricultural females during saddle and rotary quern grinding.Similarly, in both eight- and four-muscle models, upper limb loading was lower during saddle quern grinding than during rotary quern grinding, suggesting that the upper limb muscles may be reduced to the previously used four-muscle model for evaluation of the upper limb loading during cereal grinding. Another implication of our measurements is to question the assumption that skeletal indicators of high involvement of the biceps brachii muscle can be interpreted as specifically indicative of saddle quern grinding.

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0243669
Author(s):  
Michal Struška ◽  
Martin Hora ◽  
Thomas R. Rocek ◽  
Vladimír Sládek

Experimental grinding has been used to study the relationship between human humeral robusticity and cereal grinding in the early Holocene. However, such replication studies raise two questions regarding the robusticity of the results: whether female nonathletes used in previous research are sufficiently comparable to early agricultural females, and whether previous analysis of muscle activation of only four upper limb muscles is sufficient to capture the stress of cereal grinding on upper limb bones. We test the influence of both of these factors. Electromyographic activity of eight upper limb muscles was recorded during cereal grinding in an athletic sample of 10 female rowers and in 25 female nonathletes and analyzed using both an eight- and four-muscle model. Athletes had lower activation than nonathletes in the majority of measured muscles, but except for posterior deltoid these differences were non-significant. Furthermore, both athletes and nonathletes had lower muscle activation during saddle quern grinding than rotary quern grinding suggesting that the nonathletes can be used to model early agricultural females during saddle and rotary quern grinding. Similarly, in both eight- and four-muscle models, upper limb loading was lower during saddle quern grinding than during rotary quern grinding, suggesting that the upper limb muscles may be reduced to the previously used four-muscle model for evaluation of the upper limb loading during cereal grinding. Another implication of our measurements is to question the assumption that skeletal indicators of high involvement of the biceps brachii muscle can be interpreted as specifically indicative of saddle quern grinding.


2011 ◽  
Vol 106 (3) ◽  
pp. 1489-1499 ◽  
Author(s):  
Curtis D. Manning ◽  
Parveen Bawa

Torque motor produced stretch of upper limb muscles results in two distinct reflex peaks in the electromyographic activity. Whereas the short-latency reflex (SLR) response is mediated largely by the spinal monosynaptic reflex pathway, the longer-latency reflex (LLR) is suggested to involve a transcortical loop. For the SLRs, patterns of heteronymous monosynaptic Ia connections have been well-studied for a large number of muscles in the cat and in humans. For LLRs, information is available for perturbations to proximal joints, although the protocols for most of these studies did not focus on heteronymous connections. The main objective of the present study was to elicit both SLRs and LLRs in wrist flexors and extensors and to examine heteronymous connections from these muscles to elbow flexors (biceps brachii; BiBr) and extensors (triceps brachii; TriBr) and to selected distal muscles, including abductor pollicis longus (APL), first dorsal interosseous (FDI), abductor digiti minimi (ADM), and Thenars. The stretch of wrist flexors produced SLR and LLR peaks in APL, FDI, ADM, Thenars, and BiBr while simultaneously inducing inhibition of wrist extensors and TriBr. When wrist extensors were stretched, SLR and LLR peaks were observed in TriBr, whereas the primary wrist flexors, APL and BiBr, were inhibited; response patterns of FDI, ADM, and Thenars were less consistent. The main conclusions from the observed data are that: 1) as in the cat, afferents from wrist flexors and extensors make heteronymous connections with proximal and distal upper limb muscles; and 2) the strength of heteronymous connections is greater for LLRs than SLRs in the distal muscles, whereas the opposite is true for the proximal muscles. In the majority of observations, SLR and LLR excitatory peaks were observed together. However, on occasion, LLRs were observed without the SLR response in hand muscles when wrist extensors were stretched.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Wei Li ◽  
Chong Li ◽  
Quan Xu ◽  
Linhong Ji

Studying the therapeutic effects of focal vibration (FV) in neurorehabilitation is the focus of current research. However, it is still not fully understood how FV on upper limb muscles affects the sensorimotor cortex in healthy subjects. To explore this problem, this experiment was designed and conducted, in which FV was applied to the muscle belly of biceps brachii in the left arm. During the experiment, electroencephalography (EEG) was recorded in the following three phases: before FV, during FV, and two minutes after FV. During FV, a significant lower relative power at C3 and C4 electrodes and a significant higher connection strength between five channel pairs (Cz-FC1, Cz-C3, Cz-CP6, C4-FC6, and FC6-CP2) in the alpha band were observed compared to those before FV. After FV, the relative power at C4 in the beta band showed a significant increase compared to its value before FV. The changes of the relative power at C4 in the alpha band had a negative correlation with the relative power of the beta band during FV and with that after FV. The results showed that FV on upper limb muscles could activate the bilateral primary somatosensory cortex and strengthen functional connectivity of the ipsilateral central area (FC1, C3, and Cz) and contralateral central area (CP2, Cz, C4, FC6, and CP6). These results contribute to understanding the effect of FV over upper limb muscles on the brain cortical network.


2015 ◽  
Vol 11 (2) ◽  
pp. 65-74 ◽  
Author(s):  
K.L. Cullen ◽  
J.P. Dickey ◽  
S.H.M. Brown ◽  
S.G. Nykamp ◽  
L.R. Bent ◽  
...  

This study investigated the feasibility of obtaining ultrasound-guided intramuscular fine-wire electromyographic (fEMG) recordings from four canine shoulder muscles during highly dynamic activities. Four cadaveric canines were utilised to confirm the appropriate anatomical landmarks and the use of real time ultrasound guidance for electrode placement for four shoulder muscles: Biceps Brachii (BB), Supraspinatus (SP), Infraspinatus (IF), and Triceps Brachii – Long Head (TBLH). Electromyographic activity of the left BB, S P, IF, and TBLH was then recorded in two research dogs while walking and trotting to refine the data collection procedures. Finally, the full experimental protocol was piloted with two client-owned, specially-trained agility dogs, confirming the feasibility of collecting fEMG recordings while performing dynamic, highly-specific agility-related tasks and verifying our EMG amplitude normalisation protocol to enable comparisons across muscles and performance tasks. We present specific guidelines regarding the placement of fEMG electrodes and data collection/normalisation procedures to enable investigations of muscle activation during dynamic activities.


2011 ◽  
Vol 23 (01) ◽  
pp. 75-82 ◽  
Author(s):  
Yu-Lin Ning ◽  
Jia-Da Li ◽  
Wei-Ching Lo ◽  
Chih-Hung Huang ◽  
Chu-Fen Chang ◽  
...  

Adequate pattern and consistency of the muscle recruitment is essential to symbolize the destruction of the opponent with high movement velocities and precise targeting of the opponent's head and body during a karate jab. The purpose of this study was to evaluate the reaction time (RT), motor time (MT), and total response time (TRT), as well as their correlation during a karate jab, and to investigate the recruitment pattern and consistency of muscles during motor time. As many as 14 professional karate athletes (age: 23.67 ± 2.64 years; height: 174.57 ± 7.13 cm; and weight: 72.75 ± 10.65 kg) participated in the current study. Each subject was instructed to pose in combat stance first and then to use their left hand to jab at an instrumented kicking target as soon as they saw the start signal. Surface electromyograms (EMGs) were recorded from 16 muscles, namely the pronator teres, biceps brachii, triceps brachii, and deltoid of the left upper limb, right erector spinae, left rectus abdominis, and gluteus maximus, rectus femoris, biceps femoris, tibialis anterior, and medial gastrocnemius of the right and left lower limbs. Start and stop signals from the instrumented target were also recorded synchronously to obtain the TRT. Significant correlation between MT and TRT indicated that MT was a key determinant for the TRT of the jab. When performing a karate jab, the karate athletes initiated the movement with postural adjustments of the legs and trunk prior to the onset of the voluntary jab by the upper limb, and with a proximal-to-distal sequence of muscle activation in the left arm. Good consistencies of muscle recruitment of the trunk, left arm, and leg, and cocontraction of the left triceps and biceps brachii also indicated a well-controlled jab by the left arm. These results provide important information on the patterns and the consistencies of the muscle recruitment for coaching a karate jab, which should be helpful for a better understanding of the motor control strategies of a karate jab and for developing a suitable training protocol.


2015 ◽  
Vol 19 (4) ◽  
pp. 597-603 ◽  
Author(s):  
Áurea Maria de Ponte ◽  
Elaine Caldeira de Oliveira Guirro ◽  
Ariane Hidalgo Mansano Pletsch ◽  
Almir Vieira Dibai-Filho ◽  
Hugo Evangelista Brandino ◽  
...  

1997 ◽  
Vol 77 (6) ◽  
pp. 3401-3405 ◽  
Author(s):  
Stephan Salenius ◽  
Karin Portin ◽  
Matti Kajola ◽  
Riitta Salmelin ◽  
Riitta Hari

Salenius, Stephan, Karin Portin, Matti Kajola, Riitta Salmelin, and Riitta Hari. Cortical control of human motoneuron firing during isometric contraction. J. Neurophysiol. 77: 3401–3405, 1997. We recorded whole scalp magnetoencephalographic (MEG) signals simultaneously with the surface electromyogram from upper and lower limb muscles of six healthy right-handed adults during voluntary isometric contraction. The 15- to 33-Hz MEG signals, originating from the anterior bank of the central sulcus, i.e., the primary motor cortex, were coherent with motor unit firing in all subjects and for all muscles. The coherent cortical rhythms originated in the hand motor area for upper limb muscles (1st dorsal interosseus, extensor indicis proprius, and biceps brachii) and close to the foot area for lower limb muscles (flexor hallucis brevis). The sites of origin corresponding to different upper limb muscles did not differ significantly. The cortical signals preceded motor unit firing by 12–53 ms. The lags were shortest for the biceps brachii and increased systematically with increasing corticomuscular distance. We suggest that the motor cortex drives the spinal motoneuronal pool during sustained contractions, with the observed cortical rhythmic activity influencing the timing of efferent commands. The cortical rhythms could be related to motor binding, but the rhythmic output may also serve to optimize motor cortex output during isometric contractions.


2015 ◽  
Vol 9 (2) ◽  
Author(s):  
Johann Peter Kuhtz-Buschbeck ◽  
Antonia Frendel

<p>Background: Arm swing is deliberately emphasized during power walking, a popular aerobic fitness exercise. Electromyographic (EMG) activation curves of arm and shoulder muscles during power walking have not yet been examined. Aim: To describe the amount and pattern of EMG activity of upper limb muscles during power walking. Data are compared to normal walking and jogging. Method:  Twenty volunteers were examined on a treadmill at 6 km/h during (a) normal walking, (b) power walking, (c) jogging. EMG data were collected for the trapezius (TRAP), anterior (AD) and posterior deltoid (PD), biceps (BIC), triceps (TRI), latissimus dorsi (LD) and erector spinae (ES) muscles. Results:  Activity of four muscles (AD, BIC, PD, TRAP) was three- to fivefold stronger during power walking than normal walking. Smaller significant increases involved the TRI, LD and ES. Two muscles (AD, TRAP) were more active during power walking than running. Normal walking and power walking involved similar EMG patterns of PD, LD, ES, while EMG patterns of running and walking differed. Interpretation: Emphasizing arm swing during power walking triples the EMG activity of upper limb muscles, compared to normal walking. Similar basic temporal muscle activation patterns in both modes of walking indicate a common underlying motor program. </p>


2015 ◽  
Vol 9 (2) ◽  
Author(s):  
Johann Peter Kuhtz-Buschbeck ◽  
Antonia Frendel

Background: Arm swing is deliberately emphasized during power walking, a popular aerobic fitness exercise. Electromyographic (EMG) activation curves of arm and shoulder muscles during power walking have not yet been examined. Aim: To describe the amount and pattern of EMG activity of upper limb muscles during power walking. Data are compared to normal walking and jogging. Method: Twenty volunteers were examined on a treadmill at 6 km/h during (a) normal walking, (b) power walking, (c) jogging. EMG data were collected for the trapezius (TRAP), anterior (AD) and posterior deltoid (PD), biceps (BIC), triceps (TRI), latissimus dorsi (LD) and erector spinae (ES) muscles. Results: Activity of four muscles (AD, BIC, PD, TRAP) was three- to fivefold stronger during power walking than normal walking. Smaller significant increases involved the TRI, LD and ES. Two muscles (AD, TRAP) were more active during power walking than running. Normal walking and power walking involved similar EMG patterns of PD, LD, ES, while EMG patterns of running and walking differed. Interpretation: Emphasizing arm swing during power walking triples the EMG activity of upper limb muscles, compared to normal walking. Similar basic temporal muscle activation patterns in both modes of walking indicate a common underlying motor program.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Mónica Rojas-Martínez ◽  
Leidy Yanet Serna ◽  
Mislav Jordanic ◽  
Hamid Reza Marateb ◽  
Roberto Merletti ◽  
...  

AbstractThis paper presents a dataset of high-density surface EMG signals (HD-sEMG) designed to study patterns of sEMG spatial distribution over upper limb muscles during voluntary isometric contractions. Twelve healthy subjects performed four different isometric tasks at different effort levels associated with movements of the forearm. Three 2-D electrode arrays were used for recording the myoelectric activity from five upper limb muscles: biceps brachii, triceps brachii, anconeus, brachioradialis, and pronator teres. Technical validation comprised a signals quality assessment from outlier detection algorithms based on supervised and non-supervised classification methods. About 6% of the total number of signals were identified as “bad” channels demonstrating the high quality of the recordings. In addition, spatial and intensity features of HD-sEMG maps for identification of effort type and level, have been formulated in the framework of this database, demonstrating better performance than the traditional time-domain features. The presented database can be used for pattern recognition and MUAP identification among other uses.


Sign in / Sign up

Export Citation Format

Share Document