scholarly journals Computational optical sectioning by phase-space imaging with an incoherent multiscale scattering model

2020 ◽  
Author(s):  
Yi Zhang ◽  
Zhi Lu ◽  
Jiamin Wu ◽  
Xing Lin ◽  
Dong Jiang ◽  
...  

Optical sectioning is essential for fluorescence imaging in thick tissue to extract in-focus information from noisy background. Traditional methods achieve optical sectioning by rejecting the out-of-focus photons at a cost of photon efficiency, resulting in a tradeoff between sectioning capability and detection parallelization. Here, we show phase-space imaging with an incoherent multiscale scattering model can achieve computational optical sectioning with ~20 dB improvement for signal-to-background ratio in scattering medium, while maximizing the detection parallelization by imaging the entire volume simultaneously. We validated the superior performance by imaging various biological dynamics in Drosophila embryos, zebrafish larvae, and mice.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi Zhang ◽  
Zhi Lu ◽  
Jiamin Wu ◽  
Xing Lin ◽  
Dong Jiang ◽  
...  

AbstractQuantitative volumetric fluorescence imaging at high speed across a long term is vital to understand various cellular and subcellular behaviors in living organisms. Light-field microscopy provides a compact computational solution by imaging the entire volume in a tomographic way, while facing severe degradation in scattering tissue or densely-labelled samples. To address this problem, we propose an incoherent multiscale scattering model in a complete space for quantitative 3D reconstruction in complicated environments, which is called computational optical sectioning. Without the requirement of any hardware modifications, our method can be generally applied to different light-field schemes with reduction in background fluorescence, reconstruction artifacts, and computational costs, facilitating more practical applications of LFM in a broad community. We validate the superior performance by imaging various biological dynamics in Drosophila embryos, zebrafish larvae, and mice.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 90
Author(s):  
Shuo Zhu ◽  
Enlai Guo ◽  
Qianying Cui ◽  
Lianfa Bai ◽  
Jing Han ◽  
...  

Scattering medium brings great difficulties to locate and reconstruct objects especially when the objects are distributed in different positions. In this paper, a novel physics and learning-heuristic method is presented to locate and image the object through a strong scattering medium. A novel physics-informed framework, named DINet, is constructed to predict the depth and the image of the hidden object from the captured speckle pattern. With the phase-space constraint and the efficient network structure, the proposed method enables to locate the object with a depth mean error less than 0.05 mm, and image the object with an average peak signal-to-noise ratio (PSNR) above 24 dB, ranging from 350 mm to 1150 mm. The constructed DINet firstly solves the problem of quantitative locating and imaging via a single speckle pattern in a large depth. Comparing with the traditional methods, it paves the way to the practical applications requiring multi-physics through scattering media.


Author(s):  
Shuo Zhu ◽  
Enlai Guo ◽  
Qianying Cui ◽  
Dongliang Zheng ◽  
Lianfa Bai ◽  
...  

1991 ◽  
Vol 45 (10) ◽  
pp. 1604-1606 ◽  
Author(s):  
Anurag Govil ◽  
David M. Pallister ◽  
Li-Heng Chen ◽  
Michael D. Morris

We describe the use of Hadamard transform Raman microscopy to acquire optically sectioned images of crystals of benzoic acid. Nearest-neighbor deblurring is used to reject out-of-focus information and sharpen the Raman images obtained from the crystal.


Author(s):  
J.G. White ◽  
V.F. Centonze ◽  
D.L. Wokosin

The technique of optical sectioning allows the visualization of a succession of images of parallel planes within a thick specimen with little or no out-of-focus interference. Ultimately, a limit is reached on the depth to which optical sections can be obtained from a given sample. This limit, up to the working distance of the objective, is largely determined by the degree of light scattering encountered by the incident excitation beam as well as the returning emission signal.Confocal imaging was one of the first optical sectioning techniques applied to fluorescence imaging. Two-photon excitation imaging is a recently developed alternative optical sectioning technique for fluorescence imaging where an excitation wavelength of around twice the excitation peak of the fluorophore is used in a laser-scanning microscope. This excitation wavelength produces very little fluorophore excitation in the bulk of the sample, but when the incident photons are confined in space and time sufficient two-photon absorption events can take place to obtain rapid imaging of fluorophores. With high peak powers—obtained with a sub-picosecond pulsed laser source focused by a lens—sufficient photon density can be obtained for easily detectable two-photon events. Thus fluorophore excitation occurs as two photons are absorbed essentially simultaneously, which act effectively as a single photon of twice the energy (half the wavelength). Two-photon events have a quadratic dependence on intensity, and, therefore, decrease rapidly away from the focal volume of the lens. In a raster scanning system, fluorophore excitation is confined to the optical section being viewed as fluorophore away from the lens focal volume is not excited by the long-wavelength illumination.


2014 ◽  
Vol 106 (4) ◽  
pp. L17-L19 ◽  
Author(s):  
M. Bennet ◽  
A. Akiva ◽  
D. Faivre ◽  
G. Malkinson ◽  
K. Yaniv ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document