scholarly journals β-cell SENP1 facilitates responsiveness to incretins and limits oral glucose intolerance in high fat fed mice

2020 ◽  
Author(s):  
Haopeng Lin ◽  
Nancy Smith ◽  
Aliya F Spigelman ◽  
Kunimasa Suzuki ◽  
Mourad Ferdaoussi ◽  
...  

AbstractSUMOylation reduces oxidative stress and preserves islet mass; but this happens at the expense of robust insulin secretion. To investigate a role for the deSUMOylating enzyme sentrin-specific protease 1 (SENP1) in glycemia following metabolic stress, we put pancreas/gut-specific SENP1 knockout mice (pSENP1-KO) on an 8-10-week high fat diet (HFD). Male pSENP1-KO mice were more glucose intolerant following HFD than littermate controls, but this was only obvious in response to oral glucose, and a similar but milder phenotype was observed in females. Plasma incretin responses were identical, and glucose-dependent insulinotropic polypeptide (GIP) was equally upregulated after HFD, in pSENP1-KO and - WT littermates. Islet mass was not different, but insulin secretion and β-cell exocytotic responses to Exendin4 (Ex4) and GIP were impaired in islets lacking SENP1. Glucagon secretion from pSENP1-KO islets was also reduced, consistent with the expected SENP1 knockout in all islet cells, so we generated β-cell–specific SENP1 knockout mice (βSENP1-KO). These phenocopied the pSENP1-KO mice with selective impairment in oral glucose tolerance following HFD, preserved islet mass expansion, and impaired β-cell exocytosis and insulin secretion to Ex4 and GIP. Thus, β-cell SENP1 limits glucose intolerance following HFD by ensuring a robust facilitation of insulin secretion by incretins such as GIP.

2021 ◽  
Author(s):  
Haopeng Lin ◽  
Nancy Smith ◽  
Aliya F Spigelman ◽  
Kunimasa Suzuki ◽  
Mourad Ferdaoussi ◽  
...  

SUMOylation reduces oxidative stress and preserves islet mass at the expense of robust insulin secretion. To investigate a role for the deSUMOylating enzyme <u>sen</u>trin-specific <u>p</u>rotease <u>1</u> (SENP1) following metabolic stress, we put pancreas/gut-specific SENP1 knockout mice (pSENP1-KO) on a high fat diet (HFD). Male pSENP1-KO mice were more glucose intolerant following HFD than littermate controls, but only in response to oral glucose. A similar phenotype was observed in females. Plasma glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like-peptide 1 (GLP-1) responses were identical in pSENP1-KO and -WT littermates, including the HFD-induced upregulation of GIP responses. Islet mass was not different, but insulin secretion and β-cell exocytotic responses to the GLP-1 receptor agonist Exendin-4 (Ex4) and GIP were impaired in islets lacking SENP1. Glucagon secretion from pSENP1-KO islets was also reduced, so we generated β-cell-specific SENP1 knockout mice (βSENP1-KO). These phenocopied the pSENP1-KO mice with selective impairment in oral glucose tolerance following HFD, preserved islet mass expansion, and impaired β-cell exocytosis and insulin secretion to Ex4 and GIP without changes in cAMP or Ca<sup>2+</sup> levels. Thus, β-cell SENP1 limits oral glucose intolerance following HFD by ensuring robust insulin secretion at a point downstream of incretin signaling.


2021 ◽  
Author(s):  
Haopeng Lin ◽  
Nancy Smith ◽  
Aliya F Spigelman ◽  
Kunimasa Suzuki ◽  
Mourad Ferdaoussi ◽  
...  

SUMOylation reduces oxidative stress and preserves islet mass at the expense of robust insulin secretion. To investigate a role for the deSUMOylating enzyme <u>sen</u>trin-specific <u>p</u>rotease <u>1</u> (SENP1) following metabolic stress, we put pancreas/gut-specific SENP1 knockout mice (pSENP1-KO) on a high fat diet (HFD). Male pSENP1-KO mice were more glucose intolerant following HFD than littermate controls, but only in response to oral glucose. A similar phenotype was observed in females. Plasma glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like-peptide 1 (GLP-1) responses were identical in pSENP1-KO and -WT littermates, including the HFD-induced upregulation of GIP responses. Islet mass was not different, but insulin secretion and β-cell exocytotic responses to the GLP-1 receptor agonist Exendin-4 (Ex4) and GIP were impaired in islets lacking SENP1. Glucagon secretion from pSENP1-KO islets was also reduced, so we generated β-cell-specific SENP1 knockout mice (βSENP1-KO). These phenocopied the pSENP1-KO mice with selective impairment in oral glucose tolerance following HFD, preserved islet mass expansion, and impaired β-cell exocytosis and insulin secretion to Ex4 and GIP without changes in cAMP or Ca<sup>2+</sup> levels. Thus, β-cell SENP1 limits oral glucose intolerance following HFD by ensuring robust insulin secretion at a point downstream of incretin signaling.


2012 ◽  
Vol 303 (6) ◽  
pp. E752-E761 ◽  
Author(s):  
Kathryn D. Henley ◽  
Kimberly A. Gooding ◽  
Aris N. Economides ◽  
Maureen Gannon

Current endeavors in the type 2 diabetes (T2D) field include gaining a better understanding of extracellular signaling pathways that regulate pancreatic islet function. Recent data suggest that both Bmp and Wnt pathways are operative in pancreatic islets and play a positive role in insulin secretion and glucose homeostasis. Our laboratory found the dual Bmp and Wnt antagonist Sostdc1 to be upregulated in a mouse model of islet dysmorphogenesis and nonimmune-mediated lean diabetes. Because Bmp signaling has been proposed to enhance β-cell function, we evaluated the role of Sostdc1 in adult islet function using animals in which Sostdc1 was globally deleted. While Sostdc1-null animals exhibited no pancreas development phenotype, a subset of mutants exhibited enhanced insulin secretion and improved glucose homeostasis compared with control animals after 12-wk exposure to high-fat diet. Loss of Sostdc1 in the setting of metabolic stress results in altered expression of Bmp-responsive genes in islets but did not affect expression of Wnt target genes, suggesting that Sostdc1 primarily regulates the Bmp pathway in the murine pancreas. Furthermore, our data indicate that removal of Sostdc1 enhances the downregulation of the closely related Bmp inhibitors Ctgf and Gremlin in islets after 8-wk exposure to high-fat diet. These data imply that Sostdc1 regulates expression of these inhibitors and provide a means by which Sostdc1-null animals show enhanced insulin secretion and glucose homeostasis. Our studies provide insights into Bmp pathway regulation in the endocrine pancreas and reveal new avenues for improving β-cell function under metabolic stress.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Kathryn Carbajal ◽  
Michael Schaid ◽  
Cara Green ◽  
Erin Laundre ◽  
Jeffrey Harrington ◽  
...  

1997 ◽  
Vol 82 (7) ◽  
pp. 2299-2307
Author(s):  
E. Christiansen ◽  
A. Tibell ◽  
Aa. Vølund ◽  
J. J. Holst ◽  
K. Rasmussen ◽  
...  

To gain insight into the pathophysiology of impaired glucose tolerance in pancreas transplantation, glucose kinetics and insulin secretion were assessed after an oral glucose load in four combined pancreas-kidney recipients with impaired glucose tolerance (IPx), in five combined pancreas-kidney recipients with normal glucose tolerance, in six nondiabetic kidney transplant recipients, and in eight normal subjects employing a dual isotope technique. β-Cell function was evaluated by calculating prehepatic insulin secretion rates, which subsequently were correlated to the ambient glucose concentrations to obtain an index of β-cell responsiveness. Oxidative and nonoxidative glucose metabolism were assessed by indirect calorimetry. Basal insulin secretion rates, the glucose-stimulated early insulin secretion rates, as well as β-cell responsiveness were markedly reduced in IPx than in the glucose-tolerant transplant subjects. Total systemic glucose appearance was similar in the groups with apparently comparable inhibition of systemic glucose release and increase in exogenous glucose appearance. The hyperglycemic response in IPx was due to a significant reduction in the glucose disappearance rates during the first 2 h after glucose ingestion. Nonoxidative glucose metabolism increased significantly less in IPx than in glucose-tolerant groups. Glucagon secretion was less suppressed in the early part of the study in IPx, which may have contributed to the excessive hyperglycemia. In conclusion, IPx after pancreas transplantation was characterized by 1) impaired early insulin secretion, 2) reduced β-cell responsiveness, 3) reduced glucose uptake, 4) impaired nonoxidative glucose metabolism, and 5) impaired early inhibition of glucagon secretion.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ashley M. Fields ◽  
Kevin Welle ◽  
Elaine S. Ho ◽  
Clementina Mesaros ◽  
Martha Susiarjo

AbstractIn pancreatic islets, catabolism of tryptophan into serotonin and serotonin receptor 2B (HTR2B) activation is crucial for β-cell proliferation and maternal glucose regulation during pregnancy. Factors that reduce serotonin synthesis and perturb HTR2B signaling are associated with decreased β-cell number, impaired insulin secretion, and gestational glucose intolerance in mice. Albeit the tryptophan-serotonin pathway is dependent on vitamin B6 bioavailability, how vitamin B6 deficiency impacts β-cell proliferation during pregnancy has not been investigated. In this study, we created a vitamin B6 deficient mouse model and investigated how gestational deficiency influences maternal glucose tolerance. Our studies show that gestational vitamin B6 deficiency decreases serotonin levels in maternal pancreatic islets and reduces β-cell proliferation in an HTR2B-dependent manner. These changes were associated with glucose intolerance and insulin resistance, however insulin secretion remained intact. Our findings suggest that vitamin B6 deficiency-induced gestational glucose intolerance involves additional mechanisms that are complex and insulin independent.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1666
Author(s):  
Dean S. Ross ◽  
Tzu-Hsuan Yeh ◽  
Shalinie King ◽  
Julia Mathers ◽  
Mark S. Rybchyn ◽  
...  

Increased risks of skeletal fractures are common in patients with impaired glucose handling and type 2 diabetes mellitus (T2DM). The pathogenesis of skeletal fragility in these patients remains ill-defined as patients present with normal to high bone mineral density. With increasing cases of glucose intolerance and T2DM it is imperative that we develop an accurate rodent model for further investigation. We hypothesized that a high fat diet (60%) administered to developing male C57BL/6J mice that had not reached skeletal maturity would over represent bone microarchitectural implications, and that skeletally mature mice would better represent adult-onset glucose intolerance and the pre-diabetes phenotype. Two groups of developing (8 week) and mature (12 week) male C57BL/6J mice were placed onto either a normal chow (NC) or high fat diet (HFD) for 10 weeks. Oral glucose tolerance tests were performed throughout the study period. Long bones were excised and analysed for ex vivo biomechanical testing, micro-computed tomography, 2D histomorphometry and gene/protein expression analyses. The HFD increased fasting blood glucose and significantly reduced glucose tolerance in both age groups by week 7 of the diets. The HFD reduced biomechanical strength, both cortical and trabecular indices in the developing mice, but only affected cortical outcomes in the mature mice. Similar results were reflected in the 2D histomorphometry. Tibial gene expression revealed decreased bone formation in the HFD mice of both age groups, i.e., decreased osteocalcin expression and increased sclerostin RNA expression. In the mature mice only, while the HFD led to a non-significant reduction in runt-related transcription factor 2 (Runx2) RNA expression, this decrease became significant at the protein level in the femora. Our mature HFD mouse model more accurately represents late-onset impaired glucose tolerance/pre-T2DM cases in humans and can be used to uncover potential insights into reduced bone formation as a mechanism of skeletal fragility in these patients.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniela Nasteska ◽  
Nicholas H. F. Fine ◽  
Fiona B. Ashford ◽  
Federica Cuozzo ◽  
Katrina Viloria ◽  
...  

AbstractTranscriptionally mature and immature β-cells co-exist within the adult islet. How such diversity contributes to insulin release remains poorly understood. Here we show that subtle differences in β-cell maturity, defined using PDX1 and MAFA expression, contribute to islet operation. Functional mapping of rodent and human islets containing proportionally more PDX1HIGH and MAFAHIGH β-cells reveals defects in metabolism, ionic fluxes and insulin secretion. At the transcriptomic level, the presence of increased numbers of PDX1HIGH and MAFAHIGH β-cells leads to dysregulation of gene pathways involved in metabolic processes. Using a chemogenetic disruption strategy, differences in PDX1 and MAFA expression are shown to depend on islet Ca2+ signaling patterns. During metabolic stress, islet function can be restored by redressing the balance between PDX1 and MAFA levels across the β-cell population. Thus, preserving heterogeneity in PDX1 and MAFA expression, and more widely in β-cell maturity, might be important for the maintenance of islet function.


2006 ◽  
Vol 26 (12) ◽  
pp. 4553-4563 ◽  
Author(s):  
Seon-Yong Yeom ◽  
Geun Hyang Kim ◽  
Chan Hee Kim ◽  
Heun Don Jung ◽  
So-Yeon Kim ◽  
...  

ABSTRACT Activating signal cointegrator 2 (ASC-2) is a transcriptional coactivator of many nuclear receptors (NRs) and other transcription factors and contains two NR-interacting LXXLL motifs (NR boxes). In the pancreas, ASC-2 is expressed only in the endocrine cells of the islets of Langerhans, but not in the exocrine cells. Thus, we examined the potential role of ASC-2 in insulin secretion from pancreatic β-cells. Overexpressed ASC-2 increased glucose-elicited insulin secretion, whereas insulin secretion was decreased in islets from ASC-2+/− mice. DN1 and DN2 are two dominant-negative fragments of ASC-2 that contain NR boxes 1 and 2, respectively, and block the interactions of cognate NRs with the endogenous ASC-2. Primary rat islets ectopically expressing DN1 or DN2 exhibited decreased insulin secretion. Furthermore, relative to the wild type, ASC-2+/− mice showed reduced islet mass and number, which correlated with increased apoptosis and decreased proliferation of ASC-2+/− islets. These results suggest that ASC-2 regulates insulin secretion and β-cell survival and that the regulatory role of ASC-2 in insulin secretion appears to involve, at least in part, its interaction with NRs via its two NR boxes.


1999 ◽  
Vol 277 (2) ◽  
pp. E283-E290 ◽  
Author(s):  
Pankaj Shah ◽  
Ananda Basu ◽  
Rita Basu ◽  
Robert Rizza

People with type 2 diabetes have defects in both α- and β-cell function. To determine whether lack of suppression of glucagon causes hyperglycemia when insulin secretion is impaired but not when insulin secretion is intact, twenty nondiabetic subjects were studied on two occasions. On both occasions, a “prandial” glucose infusion was given over 5 h while endogenous hormone secretion was inhibited. Insulin was infused so as to mimic either a nondiabetic ( n = 10) or diabetic ( n = 10) postprandial profile. Glucagon was infused at a rate of 1.25 ng ⋅ kg−1 ⋅ min−1, beginning either at time zero to prevent a fall in glucagon (nonsuppressed study day) or at 2 h to create a transient fall in glucagon (suppressed study day). During the “diabetic” insulin profile, lack of glucagon suppression resulted in a marked increase ( P < 0.002) in both the peak glucose concentration (11.9 ± 0.4 vs. 8.9 ± 0.4 mmol/l) and the area above basal of glucose (927 ± 77 vs. 546 ± 112 mmol ⋅ l−1 ⋅ 6 h) because of impaired ( P < 0.001) suppression of glucose production. In contrast, during the “nondiabetic” insulin profile, lack of suppression of glucagon resulted in only a slight increase ( P< 0.02) in the peak glucose concentration (9.1 ± 0.4 vs. 8.4 ± 0.3 mmol/l) and the area above basal of glucose (654 ± 146 vs. 488 ± 118 mmol ⋅ l−1 ⋅ 6 h). Of interest, when glucagon was suppressed, glucose concentrations differed only minimally during the nondiabetic and diabetic insulin profiles. These data indicate that lack of suppression of glucagon can cause substantial hyperglycemia when insulin availability is limited, therefore implying that inhibitors of glucagon secretion and/or glucagon action are likely to be useful therapeutic agents in such individuals.


Sign in / Sign up

Export Citation Format

Share Document