scholarly journals Synergy between a shallow root system with a DRO1 homologue and localized P application improves rice P uptake

2020 ◽  
Author(s):  
Aung Zaw Oo ◽  
Yasuhiro Tsujimoto ◽  
Mana Mukai ◽  
Tomohiro Nishigaki ◽  
Toshiyuki Takai ◽  
...  

ABSTRACTThe development of genotypes and fertilizer management practices that facilitate high phosphorus (P) use efficiency is needed given the depleting phosphorus ore deposits and increasing ecological concerns about its excessive use. Root system architecture (RSA) is important in efficiently capturing immobile P in soils, while agronomically, localized P application near the roots is a potential approach to address this issue. However, the interaction between genetic traits of RSA and localized P application has not been examined. Near-isogenic lines (NILs) and their parent of rice (qsor1-NIL, Dro1-NIL, and IR64, with shallow, deep, and intermediate root growth angles (RGA), respectively) were grown in flooded pots in a uniform and P-sufficient condition (Pinco), and with localized P application by dipping seedling roots into P-enriched slurry at transplanting (P-dipping). The P-dipping created an available P hotspot at the soil surface and substantially improved applied P-use efficiency (equivalent biomass at one fifth of application rate of the Pinco). Further, the qsor1-NIL had significantly greater biomass and P uptake than the other genotypes in the P-dipping. The qsor1-NIL consistently had a greater root biomass and surface area in the 0–3 cm soil layer, despite that there were no genotype differences in total values and that the other genotypes also reduced their RGAs responding to the P hotspot in the P-dipping. The shallow root system of qsor1-NIL facilitated P uptake from the P hotspot. P-use efficiency in crop production can be further increased by combining genetic traits of RSA and localized P application.

2021 ◽  
Author(s):  
Aung Zaw Oo ◽  
YASUHIRO TSUJIMOTO ◽  
Mana Mukai ◽  
Tomohiro Nishigaki ◽  
Toshiyuki Takai ◽  
...  

Abstract Improved phosphorus (P) use efficiency for crop production is needed given the depleting phosphorus ore deposits and increasing ecological concerns about its excessive use. Root system architecture (RSA) is important in efficiently capturing immobile P in soils, while agronomically, localized P application near the roots is a potential approach to address this issue. However, the interaction between genetic traits of RSA and localized P application has been little understood. Near-isogenic lines (NILs) and their parent of rice (qsor1-NIL, Dro1-NIL, and IR64, with shallow, deep, and intermediate root growth angles (RGA), respectively) were grown in flooded pots after placing P near the roots at transplanting (P-dipping). The experiment identified that the P-dipping created an available P hotspot at the soil surface; the qsor1-NIL had the greatest root biomass and root surface area in the 0–3 cm soil layer despite no genotype differences in total values; the qsor1-NIL had significantly greater biomass and P uptake than the other genotypes in the P-dipping. The superior surface root development of qsor1-NIL could have facilitated P uptakes from the P hotspot, implying that P-use efficiency in crop production can be further increased by combining genetic traits of RSA and localized P application.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aung Zaw Oo ◽  
Yasuhiro Tsujimoto ◽  
Mana Mukai ◽  
Tomohiro Nishigaki ◽  
Toshiyuki Takai ◽  
...  

AbstractImproved phosphorus (P) use efficiency for crop production is needed, given the depletion of phosphorus ore deposits, and increasing ecological concerns about its excessive use. Root system architecture (RSA) is important in efficiently capturing immobile P in soils, while agronomically, localized P application near the roots is a potential approach to address this issue. However, the interaction between genetic traits of RSA and localized P application has been little understood. Near-isogenic lines (NILs) and their parent of rice (qsor1-NIL, Dro1-NIL, and IR64, with shallow, deep, and intermediate root growth angles (RGA), respectively) were grown in flooded pots after placing P near the roots at transplanting (P-dipping). The experiment identified that the P-dipping created an available P hotspot at the plant base of the soil surface layer where the qsor1-NIL had the greatest root biomass and root surface area despite no genotyipic differences in total values, whereby the qsor1-NIL had significantly greater biomass and P uptake than the other genotypes in the P-dipping. The superior surface root development of qsor1-NIL could have facilitated P uptakes from the P hotspot, implying that P-use efficiency in crop production can be further increased by combining genetic traits of RSA and localized P application.


Author(s):  
Beza Shewangizaw ◽  
Anteneh Argaw ◽  
Tesfaye Feyisa ◽  
Endalkachew Wold-Meskel ◽  
Birhan Abdulkadir

Abstract In sub-Saharan Africa, multiple plant nutrients deficiency besides N and P is a major growth-limiting factor for crop production. As a result, some soils become non-responsive for Rhizobium inoculation besides P application. Based on the soil test result, the soil of experimental sites had low OM, N, P, S and Zn. Hence, an experiment was carried out on-farm, during 2016/17 growing season, at Gondar Zuria woreda in Tsion and Denzaz Kebeles to evaluate the effect of Rhizobium inoculation, S and Zn application on yield, nodulation, N and P uptake of chickpea. The experiment included twelve treatments developed via factorial combination of two level of inoculation (Rhizobium inoculated, un-inoculated), three level of S (0, 15, 30 kg Sulphur ha-1) and two levels of Zn (0, 1.5 kg Zinc ha-1). The treatment was laid out in randomized complete block design with three replications. Results showed that the highest mean nodule number (15.3) and nodule volume (1.3 ml plant-1) over locations were obtained with Rhizobium inoculation integrated with 15 kg S and 1.5 kg Zn ha-1 which resulted in 37.8% and 116.7% increment over the control check, respectively. It was also observed that combined application of Rhizobium and 30 kg S ha-1 caused the highest (6.7) mean nodulation rating and seed yield (1775.5 kg ha-1) over locations which resulted in 86.1% and 28 % increase over the control check, respectively. Moreover, this treatment improved P use efficiency of chickpea. On the bases of observed result, it can be concluded that the response of chickpea to Rhizobium and P application can be improved by S application and Rhizobium inoculation with application of 30 kg S ha-1 with recommended rate of P and starter N is recommended for chickpea production at the experimental locations in Gonder Zuria Woreda.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1548
Author(s):  
Yan Zhang ◽  
Tiequan Zhang ◽  
Yutao Wang ◽  
Chinsheng Tan ◽  
Lei Zhang ◽  
...  

The traditional manure management strategy, based on crop N needs, results in accumulation of phosphorus (P) in soil due to the imbalance of N/P ratio between crop requirement and manure supply. This study was conducted from 2004 to 2013 to evaluate the effects of P-based liquid and solid swine manure (LMP and SMP, for P-based liquid and solid swine manure, respectively) application, in comparison with N-based application (LMN and SMN, for N-based liquid and solid swine manure, respectively), on crop yield and soil residual P under corn (Zea mays L.)–soybean (Glycine max L.) rotation in a Brookston clay loam soil of the Lake Erie basin, ON, Canada. Chemical fertilizer P (CFP) and non-P treatments were included as controls (CK). For liquid manure treatments, corn yield for LMN showed a lower annual corn yield (7.82 Mg ha−1) than LMP (9.36 Mg ha−1), and their differences were even statistically significant at p < 0.05 in some cropping years. The annual corn yield of LMP was also higher than those of SMP (7.45 Mg ha−1) and SMN (7.41 Mg ha−1), even the CFP (8.61 Mg ha−1), although the corresponding yield differences were not significant (p < 0.05) in some cropping years. For soybean, the plots with P application produced an average of 0.98 Mg ha−1 greater annual yields than CK. No significant differences were found between CFP and manure treatments. The annual corn yield of SMN was close to that of the CK (7.19 Mg ha−1). The grain P removal (GPR) of SMN (18.6 kg ha−1) for soybean was significantly higher than that of the other treatments. The above-ground-P uptake (AGPU) in SMN, for both corn and soybean, was significantly higher than that of the other five treatments. The soil test P (STP) presented clear stratification, concentrating in the top 30 cm soil depth after 10 years of application. The contents of STP with LMN and SMN increased from 7.1 mg P kg−1 to 12.4 and 45.5 mg P kg−1, respectively. The sum of STP mass (0–30 cm) with LMP (31.6 kg ha−1) was largely identical to that with CFP (30.1 kg ha−1); however, with SMN (173.7 kg ha−1), it was significantly higher than the rest of the treatments. Manure P source availability coefficients were averaged at 1.06 and 1.07 for LMP and SMP, respectively. The addition of phosphorus-based liquid or solid swine manure can overcome the drawback of traditional N-based applications by potentially reducing the adverse impact on water quality while sustaining crop agronomic production.


Author(s):  
Beza Shewangizaw Woldearegay ◽  
Anteneh Argaw ◽  
Tesfaye Feyisa ◽  
Birhan Abdulkadir ◽  
Endalkachew Wold-Meskel

In sub-Saharan Africa, multiple plant nutrients deficiency besides nitrogen (N) and phosphorus (P) is a major growth-limiting factor for crop production. As a result, some soils become non-responsive for Rhizobium inoculation besides P application. Based on the soil test result, the soil of Experimental sites had low organic matter (OM), nitrogen (N), phosphorus (P), sulphur (S) and zinc (Zn)[xy1]. Hence, an experiment was carried out on-farm at Gondar Zuria woreda in Tsion and Denzaz Kebeles to evaluate the effect of Rhizobium inoculation, S and Zn application on yield, nodulation, N and P uptake of chickpea. The experiment included twelve treatments developed via factorial combination of two level of inoculation (Rhizobium inoculated, un-inoculated), three level of S (0, 15, 30 kg Sulphur ha-1) and two levels of Zn (0, 1.5 kg Zinc ha-1). The treatment was laid out in randomized complete block design with three replications. Results showed that the highest mean nodule number (15.3) and nodule volume (1.3 ml plant-1) over locations were obtained with Rhizobium inoculation integrated with 15 kg S and 1.5 kg Zn ha-1 which resulted in 37.8% and 116.7% increment over the control check, respectively. It was also observed that combined application of Rhizobium and 30 kg S ha-1 caused the highest (6.7) mean nodulation rating and seed yield (1775.5 kg ha-1) over locations which resulted in 86.1% and 28 % increase over the control check, respectively. Moreover, this treatment improved P use efficiency of chickpea. On the bases of observed result, it can be concluded that the response of chickpea to Rhizobium and P application can be improved by S application and Rhizobium inoculation with application of 30 kg S ha-1 with recommended rate of P and starter N is recommended for chickpea production at the experimental locations in Gonder Zuria Woreda.


2006 ◽  
Vol 46 (1) ◽  
pp. 19 ◽  
Author(s):  
Y. P. Dang ◽  
R. C. Dalal ◽  
R. Routley ◽  
G. D. Schwenke ◽  
I. Daniells

In dryland agricultural systems of the subtropical, semi-arid region of north-eastern Australia, water is the most limiting resource. Crop productivity depends on the efficient use of rainfall and available water stored in the soil during fallow. Agronomic management practices including a period of fallow, stubble retention, and reduced tillage enhance reserves of soil water. However, access to stored water in these soils may be restricted by the presence of growth-limiting conditions in the rooting zone of the crop. These have been termed as subsoil constraints. Subsoil constraints may include compacted or gravel layers (physical), sodicity, salinity, acidity, nutrient deficiencies, presence of toxic elements (chemical) and low microbial activity (biological). Several of these constraints may occur together in some soils. Farmers have often not been able to obtain the potential yield determined by their prevailing climatic conditions in the marginal rainfall areas of the northern grains region. In the past, the adoption of soil management practices had been largely restricted to the top 100 mm soil layer. Exploitation of the subsoil as a source of water and nutrients has largely been overlooked. The key towards realising potential yields would be to gain better understanding of subsoils and their limitations, then develop options to manage them practically and economically. Due to the complex nature of the causal factors of these constraints, efforts are required for a combination of management approaches rather than individual options, with the aim to combat these constraints for sustainable crop production, managing natural resources and avoiding environmental damage.


2016 ◽  
Vol 59 (2) ◽  
pp. 59-68
Author(s):  
Imdad Ali Mahmood ◽  
Arshad Ali ◽  
Armghan Shahzad ◽  
Tariq Sultan

A two years field study according to split plot design was conducted to investigate the impactof crop residue (CR) incorporation and P application (0, 40, 80, 120 kg P2O5/ha) on P use efficiency andyield of direct seeded rice (DSR) and wheat grown under saline soil (ECe = 4.59 dS/m; pHs = 8.38;SAR = 6.57 (mmolc/L)1/2; extractable P = 4.07 mg/kg; texture = sandy clay loam), during the years 2011and 2012. Planting of DSR (with and without crop residue incorporation @ 2 tonnes/ha) were placed inmain plots and P application was in sub plots. Data on tillering, plant height, panicle length, 1000 grainweight, paddy and straw yields were collected. On an average of two years, maximum tillers (18), paniclelength (33), grain/panicle (121) and paddy yield (3.26 t/ha) were produced with P application @ 80 kgP2O5/ha along with CR incorporation. Similarly in case of wheat grown after DSR, maximum tillers (17),spike length (17), grains/panicle (66) and grain yield (3.56 t/ha) were produced with P application @ 80 kgP2O5/ha along with CR incorporation. Although, the growth and yield contributing parameters with thistreatment (80 kg P2O5/ha + CR) performed statistically equal to 120 kg P2O5/ha without CR incorporationduring both the years, but on an average of two years, grain yield of DSR and wheat was significantlysuperior (22 and 24%, respectively) than that of higher P rate (120 kg/ha) without CR. Overall, continuoustwo years CR incorporation further increased (17%) paddy yields during the follow up year of crop harvest.Higher P use efficiency and concentrations of P, K+ and Ca2+ in both DSR and wheat plant tissues wasfound where 80 kg P2O5/ha was applied along with CR incorporation or 120 kg P2O5/ha alone while Na+and Mg2+ concentration decreased with CR incorporation and increasing P rate. An increasing trend inDSR paddy and wheat grain yields was observed with increasing the rate of P application without CRincorporation, however, it was not as much as that of 80 kg P2O5/ha application with CR incorporationand found to be superior than rest of the treatments during both study years.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 240 ◽  
Author(s):  
Aung Zaw Oo ◽  
Yasuhiro TSUJIMOTO ◽  
Njato Mickaël RAKOTOARISOA

Given the finite nature of P fertilizer resources, it is imperative to investigate effective P management practices in order to achieve sustainable rice production. This study was conducted (1) to assess the effect of dipping rice seedlings in P-enriched slurry before transplanting (P-dipping, hereafter) on initial plant growth and (2) to determine the optimum P concentration and dipping duration. In the P-dipping treatments, four P2O5 concentrations in the slurry (4.3%, 5.0%, 6.0%, and 7.5%) and four dipping durations (0.5 h, 2 h, 4 h, and 8 h) were investigated. After the treatments, the seedlings were transplanted into 1/5000 Wagner pots and grown under flooded conditions for 42 days and they were compared with plants under conventional P incorporation at the rate of 300 mg P2O5 pot−1 and with plants under no P application. The amount of P2O5 attached to P-dipped seedlings, or locally applied in the rhizosphere at transplanting, increased with higher P concentrations in the slurry, ranging from 87.5 to 112.2 mg pot−1. Shoot biomass at 42 days after transplanting (DAT) was greatly increased in plants under the P-dipping treatments, compared to that in plants with no P application and was comparable to or greater than that in plants under conventional P incorporation, even when P levels were 2.5 to 3 times lower. Among the P-dipping treatments, we observed some significant effects of P concentrations and dipping durations on seedling P uptake and shoot biomass, without any interaction between these variables. Seedling P uptake and biomass tended to be higher with higher P concentrations in slurry and longer dipping durations. Conversely, the shoot biomass at 42 DAT was significantly lower in plants under the highest P concentration treatment (7.5% P2O5) compared to that in other plants and tended to be lower with longer dipping durations (4 h and 8 h). These negative effects can be attributed to the slow recovery from transplanting shock because of the chemical damage of seedlings exposed to higher salt concentrations for longer durations. The present study highlights that (1) P-dipping could be an effective approach to increase transplanted rice production with minimal P inputs, and (2) this effect could be higher with a low P-concentration in the slurry (4.3% P2O5) and a short dipping duration (0.5 h). Based on the obtained results, further on-farm trials are expected to assess farmers’ appreciation and the potential constraints of adopting this technique.


2011 ◽  
Vol 27 (2) ◽  
pp. 147-161 ◽  
Author(s):  
Sean M. Gleason ◽  
Jennifer Read ◽  
Adrian Ares

Abstract:Concurrent nutrient and radiation limitation in forests may engender trade-offs between P-use and radiation-use efficiency in tree species. To quantify these trade-offs, structural and physiological traits were examined among five rain-forest species subjected to four levels of fertilization and two levels of radiation in a glasshouse experiment. Schist specialists,Cryptocarya lividulaandCeratopetalum virchowii, occur only on P-poor schist soils, whereas soil generalists,Cryptocarya mackinnoniana,Franciscodendron laurifoliumandMyristica insipida, occur on both P-poor schist and P-rich basalt soils. Wild seedlings less than 20 cm tall and 1 y old were collected from field sites, treated with fungicide, sorted into treatments (48 plants per species), and grown for 11 mo. We hypothesized that soil specialists would possess mainly non-plastic traits conferring high P-use efficiency, whereas soil generalists would possess markedly plastic traits conferring high radiation capture and use, enabling them to outcompete specialists on P-rich soils. Only generalistC. mackinnonianaand specialistC. virchowiisupported these hypotheses.Cryptocarya mackinnonianahad more plastic root mass fraction, leaf area ratio, P uptake, and higher C assimilation thanC. virchowii, which resulted in greater relative growth rates in high P treatments, but lower P-use efficiency in low P treatments. In contrast, specialistC. lividulademonstrated similar trait plasticity asC. mackinnoniana, suggesting that plasticity in these traits may be poor indicators of fitness on P-poor soils.


Sign in / Sign up

Export Citation Format

Share Document