scholarly journals Combining Two Classes of Epigenetic Modifiers and Their Effect on Prostate Cancer Cells

2020 ◽  
Author(s):  
Mudassir K. Lodi ◽  
Ekaterine Goliadze ◽  
Masoud H. Manjili ◽  
Georgi Guruli

AbstractThe main objective of this experiment was to determine and study the effects of combining two epigenetic modifiers, 5-azacyticidine (5-AzaC) and SB939, on a RM-1 murine prostate cancer cell model. The effectiveness of this combination on prostate cancer cells has not been previously studied. The study was implemented on ex vivo cell models to gain a better understanding of the true effects of the combination therapy on prostate cancer cells. Two variations of the combination therapy were tested in this study, each with different concentrations of SB939 (100nm and 200nm).To determine the effectivity of the combination therapy on prostate cancer cells, three factors were measured: cell proliferation, cancer testis antigen (CTA) expression, and apoptosis rate. To measure cell proliferation, a cell proliferation assay was conducted, and absorption rate was measured through a 450 nm wavelength. CTA expression was measured through a quantitative polymerase chain reaction (quant-PCR). For this study, the expression rates of five CTAs were measured (TEX15, CEP55, CCNA1, P1A, SPA17). Apoptosis rate was measured through an Annexin-V assay, in which two markers, Annexin-V and 7-AAD, were used.We found that SB939 combined with 5-AzaC show highest efficacy compare to each drug alone in terms of inhibiting tumor cell proliferation, as well as inducing tumor cells apoptosis and enhancing tumor cell immunogenicity by the induction of the expression of CTAs. This combination proved to be effective in combating murine prostate cancer cells, and can potentially be effective within in vivo models due to its high toxicity to these cancer cells, and its ability to render prostate cancer more immunogenic.

2009 ◽  
Vol 16 (3) ◽  
pp. 795-808 ◽  
Author(s):  
Petra Massoner ◽  
Daniela Colleselli ◽  
Andrea Matscheski ◽  
Haymo Pircher ◽  
Stephan Geley ◽  
...  

IGF-binding protein-3 (IGFBP-3) is a modulator of the IGF-signaling pathway and was described as an anti-cancer agent in prostate cancer. The molecular mechanisms underlying these effects remained, however, largely undefined. We analyzed the influence of recombinant IGFBP-3 on cell proliferation of PC3, Du145, and LNCaP prostate cancer cells. As expected, IGFBP-3 inhibited IGF-stimulated cell proliferation by blocking IGF-mediated proliferation signals, but we observed an IGF-independent inhibitory effect of IGFBP-3 on prostate cancer cell proliferation in long-term cultures. We further investigated the influence of IGFBP-3 on adhesion, motility, and invasion of prostate cancer cells using adhesion assays, live-cell imaging techniques, and matrigel invasion measurements. There was a clear inhibitory effect of IGFBP-3 on tumor cell adhesion to extracellular matrix components in the presence and absence of IGF, whereas cell–cell adhesion was not affected. The same inhibitory effect of IGFBP-3 was determined on cell motility when real-time cell movements were followed. In addition, IGFBP-3 was able to inhibit tumor cell invasion through matrigel. In summary, we show that IGFBP-3 inhibits proliferation, adhesion, migration, and invasion processes of prostate tumor cells. These newly described mechanisms of IGFBP-3 can be of importance for tumor progression and support a role of IGFBP-3 in therapeutic settings.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ding-fang Zhang ◽  
Zhi-chun Yang ◽  
Jian-qiang Chen ◽  
Xiang-xiang Jin ◽  
Yin-da Qiu ◽  
...  

Abstract Background Metastatic castration-resistant prostate cancer (CRPC) is the leading cause of death among men diagnosed with prostate cancer. Piperlongumine (PL) is a novel potential anticancer agent that has been demonstrated to exhibit anticancer efficacy against prostate cancer cells. However, the effects of PL on DNA damage and repair against CRPC have remained unclear. The aim of this study was to further explore the anticancer activity and mechanisms of action of PL against CRPC in terms of DNA damage and repair processes. Methods The effect of PL on CRPC was evaluated by MTT assay, long-term cell proliferation, reactive oxygen species assay, western blot assay, flow cytometry assay (annexin V/PI staining), β-gal staining assay and DAPI staining assay. The capacity of PL to inhibit the invasion and migration of CRPC cells was assessed by scratch-wound assay, cell adhesion assay, transwell assay and immunofluorescence (IF) assay. The effect of PL on DNA damage and repair was determined via IF assay and comet assay. Results The results showed that PL exhibited stronger anticancer activity against CRPC compared to that of taxol, cisplatin (DDP), doxorubicin (Dox), or 5-Fluorouracil (5-FU), with fewer side effects in normal cells. Importantly, PL treatment significantly decreased cell adhesion to the extracellular matrix and inhibited the migration of CRPC cells through affecting the expression and distribution of focal adhesion kinase (FAK), leading to concentration-dependent inhibition of CRPC cell proliferation and concomitantly increased cell death. Moreover, PL treatment triggered persistent DNA damage and provoked strong DNA damage responses in CRPC cells. Conclusion Collectively, our findings demonstrate that PL potently inhibited proliferation, migration, and invasion of CRPC cells and that these potent anticancer effects were potentially achieved via triggering persistent DNA damage in CRPC cells.


2021 ◽  
pp. 1-9
Author(s):  
Yuxin Li ◽  
Xiaohong Zhuang ◽  
Li Zhuang ◽  
Hongjian Liu

This paper aimed at investigating AS1 expression in prostate cancer (PCa) and its effects on the proliferation and invasion of prostate cancer cells (PCCs). The prostate tissues and the matched adjacent normal prostate tissues excised and preserved during radical prostatectomy in our hospital were collected. The LncRNA NCK1-AS1 expression was detected. PCa patients were followed up for three years to analyze their prognosis. The correlation of LncRNA NCK1-AS1 expression with clinicopathological features was analyzed. Human normal prostate cells and human PCCs were selected, in which LncRNA NCK1-AS1 expression was tested to screen and then transfect the cells. Cell proliferation, invasion and migration were detected. Cell cycles and apoptosis were analyzed. Compared with the adjacent normal tissues, LncRNA NCK1-AS1 was highly expressed in the prostate cancer tissues. Its expression was remarkably different in those with different stages of TNM and with lymphatic metastasis or not. The prognosis of patients with high LncRNA NCK1-AS1 expression was remarkably poorer than that of those with low expression. Compared with the human normal prostate cells, LncRNA NCK1-AS1 expression in the human PCCs remarkably rose, with the greatest difference in 22Rv1 cells. Compared with the Blank group, cell proliferation and the number of plate cloned cells remarkably reduced in the sh-NCK1-AS1 group. Additionally, in this group, the number of invasive and migratory cells remarkably reduced; the expression of invasion-related protein E-cadherin remarkably rose but that of MMP-2 remarkably reduced; cell cycles were arrested and the expression of cycle-related proteins (CDK4, CDK6, cyclin D1) remarkably reduced; the apoptotic rate and the expression of apoptosis-related protein Bax remarkably rose. LncRNA NCK1-AS1 is highly expressed in PCa, so its down-regulation can inhibit PCCs from proliferating and reduce the number of invasive cells.


2014 ◽  
Vol 11 (2) ◽  
pp. 1435-1441 ◽  
Author(s):  
YONGRI OUYANG ◽  
PING GAO ◽  
BAOYI ZHU ◽  
XI CHEN ◽  
FANG LIN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document