scholarly journals Automated Machine Learning for High-Throughput Image-Based Plant Phenotyping

2020 ◽  
Author(s):  
Joshua C.O KOh ◽  
German Spangenberg ◽  
Surya Kant

Automated machine learning (AutoML) has been heralded as the next wave in artificial intelligence with its promise to deliver high performance end-to-end machine learning pipelines with minimal effort from the user. AutoML with neural architecture search which searches for the best neural network architectures in deep learning has delivered state-of-the-art performance in computer vision tasks such as image classification and object detection. Using wheat lodging assessment with UAV imagery as an example, we compared the performance of an open-source AutoML framework, AutoKeras in image classification and regression tasks to transfer learning using modern convolutional neural network (CNN) architectures pretrained on the ImageNet dataset. For image classification, transfer learning with Xception and DenseNet-201 achieved best classification accuracy of 93.2%, whereas Autokeras had 92.4% accuracy. For image regression, transfer learning with DenseNet-201 had the best performance (R2=0.8303, RMSE=9.55, MAE=7.03, MAPE=12.54%), followed closely by AutoKeras (R2=0.8273, RMSE=10.65, MAE=8.24, MAPE=13.87%). Interestingly, in both tasks, AutoKeras generated compact CNN models with up to 40-fold faster inference times compared to the pretrained CNNs. The merits and drawbacks of AutoML compared to transfer learning for image-based plant phenotyping are discussed.

2021 ◽  
Vol 13 (5) ◽  
pp. 858
Author(s):  
Joshua C.O. Koh ◽  
German Spangenberg ◽  
Surya Kant

Automated machine learning (AutoML) has been heralded as the next wave in artificial intelligence with its promise to deliver high-performance end-to-end machine learning pipelines with minimal effort from the user. However, despite AutoML showing great promise for computer vision tasks, to the best of our knowledge, no study has used AutoML for image-based plant phenotyping. To address this gap in knowledge, we examined the application of AutoML for image-based plant phenotyping using wheat lodging assessment with unmanned aerial vehicle (UAV) imagery as an example. The performance of an open-source AutoML framework, AutoKeras, in image classification and regression tasks was compared to transfer learning using modern convolutional neural network (CNN) architectures. For image classification, which classified plot images as lodged or non-lodged, transfer learning with Xception and DenseNet-201 achieved the best classification accuracy of 93.2%, whereas AutoKeras had a 92.4% accuracy. For image regression, which predicted lodging scores from plot images, transfer learning with DenseNet-201 had the best performance (R2 = 0.8303, root mean-squared error (RMSE) = 9.55, mean absolute error (MAE) = 7.03, mean absolute percentage error (MAPE) = 12.54%), followed closely by AutoKeras (R2 = 0.8273, RMSE = 10.65, MAE = 8.24, MAPE = 13.87%). In both tasks, AutoKeras models had up to 40-fold faster inference times compared to the pretrained CNNs. AutoML has significant potential to enhance plant phenotyping capabilities applicable in crop breeding and precision agriculture.


Author(s):  
Sweety Duseja

Abstract: Many algorithms have been developed as a result of recent advances in machine learning to handle a variety of challenges. In recent years, the most popular transfer learning method has allowed researchers and engineers to run experiments with minimal computing and time resources. To tackle the challenges of classification, product identification, product suggestion, and picture-based search, this research proposed a transfer learning strategy for Fashion image classification based on hybrid 2D-CNN pretrained by VGG-16 and AlexNet. Pre-processing, feature extraction, and classification are the three parts of the proposed system's implementation. We used the Fashion MNIST dataset, which consists of 50,000 fashion photos that have been classified. Training and validation datasets have been separated. In comparison to other conventional methodologies, the suggested transfer learning approach has higher training and validation accuracy and reduced loss. Keywords: Machine Learning, Transfer Learning, Convolutional Neural Network, Image Classification, VGG16, AlexNet, 2D CNN.


Author(s):  
Joseph D. Romano ◽  
Trang T. Le ◽  
Weixuan Fu ◽  
Jason H. Moore

AbstractAutomated machine learning (AutoML) and artificial neural networks (ANNs) have revolutionized the field of artificial intelligence by yielding incredibly high-performing models to solve a myriad of inductive learning tasks. In spite of their successes, little guidance exists on when to use one versus the other. Furthermore, relatively few tools exist that allow the integration of both AutoML and ANNs in the same analysis to yield results combining both of their strengths. Here, we present TPOT-NN—a new extension to the tree-based AutoML software TPOT—and use it to explore the behavior of automated machine learning augmented with neural network estimators (AutoML+NN), particularly when compared to non-NN AutoML in the context of simple binary classification on a number of public benchmark datasets. Our observations suggest that TPOT-NN is an effective tool that achieves greater classification accuracy than standard tree-based AutoML on some datasets, with no loss in accuracy on others. We also provide preliminary guidelines for performing AutoML+NN analyses, and recommend possible future directions for AutoML+NN methods research, especially in the context of TPOT.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Samuel Maddrell-Mander ◽  
Lakshan Ram Madhan Mohan ◽  
Alexander Marshall ◽  
Daniel O’Hanlon ◽  
Konstantinos Petridis ◽  
...  

AbstractThis paper presents the first study of Graphcore’s Intelligence Processing Unit (IPU) in the context of particle physics applications. The IPU is a new type of processor optimised for machine learning. Comparisons are made for neural-network-based event simulation, multiple-scattering correction, and flavour tagging, implemented on IPUs, GPUs and CPUs, using a variety of neural network architectures and hyperparameters. Additionally, a Kálmán filter for track reconstruction is implemented on IPUs and GPUs. The results indicate that IPUs hold considerable promise in addressing the rapidly increasing compute needs in particle physics.


2021 ◽  
Vol 10 (9) ◽  
pp. 25394-25398
Author(s):  
Chitra Desai

Deep learning models have demonstrated improved efficacy in image classification since the ImageNet Large Scale Visual Recognition Challenge started since 2010. Classification of images has further augmented in the field of computer vision with the dawn of transfer learning. To train a model on huge dataset demands huge computational resources and add a lot of cost to learning. Transfer learning allows to reduce on cost of learning and also help avoid reinventing the wheel. There are several pretrained models like VGG16, VGG19, ResNet50, Inceptionv3, EfficientNet etc which are widely used.   This paper demonstrates image classification using pretrained deep neural network model VGG16 which is trained on images from ImageNet dataset. After obtaining the convolutional base model, a new deep neural network model is built on top of it for image classification based on fully connected network. This classifier will use features extracted from the convolutional base model.


2020 ◽  
Vol 34 (10) ◽  
pp. 13783-13784
Author(s):  
Deanna Flynn ◽  
P. Michael Furlong ◽  
Brian Coltin

Our neural architecture search algorithm progressively searches a tree of neural network architectures. Child nodes are created by inserting new layers determined by a transition graph into a parent network up to a maximum depth and pruned when performance is worse than its parent. This increases efficiency but makes the algorithm greedy. Simpler networks are successfully found before more complex ones that can achieve benchmark performance similar to other top-performing networks.


Sign in / Sign up

Export Citation Format

Share Document