scholarly journals Africanized honeybees in Colombia exhibit high prevalence but low level of infestation of Varroa mites and low prevalence of pathogenic viruses

2020 ◽  
Author(s):  
Victor Manuel Tibata ◽  
Andres Sanchez ◽  
Evan Young-Palmer ◽  
Howard Junca ◽  
Victor Manuel Solarte ◽  
...  

The global spread of the ectoparasitic mite Varroa destructor has promoted the spread and virulence of highly infectious honey bee viruses. This phenomenon is considered the leading cause for the increased number of colony losses experienced by the mite-susceptible European honey bee populations in the Northern Hemisphere. Most of the honey bee populations in Central and South America are Africanized honey bees, which are considered more resistant to Varroa compared to European honey bees . However, the relationship between Varroa levels and spread of honey bee viruses in Africanized honey bees remains unknown. In this study, we determined Varroa prevalence and infestation levels as well as the prevalence of seven major honey bee viruses in Africanized honey bees from three regions of Colombia. We found that although Varroa exhibited high prevalence (92%), its infestation levels were low (4.6%) considering that these populations never received acaricide treatments. We also detected four viruses in the three regions analyzed, but all hives were asymptomatic, and virus prevalence was considerably lower than those found in other countries with higher rates of mite-associated colony loss ( DWV 19.88%, BQCV 17.39%, SBV 23.4 %, ABPV 10.56%).   Our findings indicate that AHBs possess natural resistance to Varroa that does not prevent the spread of this parasite among their population, but restrains mite population growth and suppresses the prevalence and pathogenicity of mite-associated viruses.

PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0244906
Author(s):  
Víctor Manuel Tibatá ◽  
Andrés Sanchez ◽  
Evan Palmer-Young ◽  
Howard Junca ◽  
Victor Manuel Solarte ◽  
...  

The global spread of the ectoparasitic mite Varroa destructor has promoted the spread and virulence of highly infectious honey bee viruses. This phenomenon is considered the leading cause for the increased number of colony losses experienced by the mite-susceptible European honey bee populations in the Northern hemisphere. Most of the honey bee populations in Central and South America are Africanized honey bees (AHBs), which are considered more resistant to Varroa compared to European honey bees. However, the relationship between Varroa levels and the spread of honey bee viruses in AHBs remains unknown. In this study, we determined Varroa prevalence and infestation levels as well as the prevalence of seven major honey bee viruses in AHBs from three regions of Colombia. We found that although Varroa exhibited high prevalence (92%), its infestation levels were low (4.5%) considering that these populations never received acaricide treatments. We also detected four viruses in the three regions analyzed, but all colonies were asymptomatic, and virus prevalence was considerably lower than those found in other countries with higher rates of mite-associated colony loss (DWV 19.88%, BQCV 17.39%, SBV 23.4%, ABPV 10.56%). Our findings indicate that AHBs possess a natural resistance to Varroa that does not prevent the spread of this parasite among their population, but restrains mite population growth and suppresses the prevalence and pathogenicity of mite-associated viruses.


2019 ◽  
Author(s):  
Salvador Herrero ◽  
Sandra Coll ◽  
Rosa M. González-Martínez ◽  
Stefano Parenti ◽  
Anabel Millán-Leiva ◽  
...  

AbstractLarge-scale colony losses among managed Western honey bees have become a serious threat to the beekeeping industry in the last decade. There are multiple factors contributing to these losses but the impact of Varroa destructor parasitism is by far the most important, along with the contribution of some pathogenic viruses vectored by the mite. So far, more than 20 viruses have been identified infecting the honey bee, most of them RNA viruses. They may be maintained either as covert infections or causing severe symptomatic infections, compromising the viability of the colony. In silico analysis of available transcriptomic data obtained from mites collected in the USA and Europe as well as additional investigation with new samples collected locally allowed the description of three novel RNA viruses. Our results showed that these viruses were widespread among samples and that they were present in the mites and in the bees but with differences in the relative abundance and prevalence. However, we have obtained strong evidence showing that these three viruses were able to replicate in the mite, but not in the bee, suggesting that they are selectively infecting the mite. To our knowledge, this is the first demonstration of Varroa-specific viruses, which open the door to future applications that might help controlling the mite through biological control approaches.


1999 ◽  
Vol 22 (3) ◽  
pp. 321-323 ◽  
Author(s):  
Geraldo Moretto ◽  
Leonidas João de Mello Jr.

Different levels of infestation with the mite Varroa jacobsoni have been observed in the various Apis mellifera races. In general, bees of European races are more susceptible to the mite than African honey bees and their hybrids. In Brazil honey bee colonies are not treated against the mite, though apparently both climate and bee race influence the mite infestation. Six mixed colonies were made with Italian and Africanized honey bees. The percentage infestation by this parasite was found to be significantly lower in adult Africanized (1.69 ± 0.44) than Italian bees (2.79 ± 0.65). This ratio was similar to that found in Mexico, even though the Africanized bees tested there had not been in contact with varroa, compared to more than 20 years of the coexistence in Brazil. However, mean mite infestation in Brazil on both kinds of bees was only about a third of that found in Mexico.


EDIS ◽  
2007 ◽  
Vol 2007 (7) ◽  
Author(s):  
William H. Kern, Jr.

ENY-838, a 4-page illustrated fact sheet by William H. Kern, Jr., provides useful information for keeping pests out of bird and mammal nest boxes, especially the Africanized honey bee, which has become established in Florida, and sets up colonies in smaller and lower locations which may displace wildlife that uses these locations as dens. Includes recommendations, what to do if bees have invaded your nest box, and references. Published by the UF Department of Entomology and Nematology, January 2007. ENY-838/IN682: Keeping Africanized Honey Bees Out of Wildlife Nest Boxes (ufl.edu)


Author(s):  
Carine Mascena Peixoto ◽  
Suellen Oliveira França ◽  
Carize da Cruz Mercês ◽  
Maria Emilene Correia-Oliveira ◽  
Carlos Alfredo Lopes de Carvalho

2020 ◽  
Vol 52 (1) ◽  
Author(s):  
Matthieu Guichard ◽  
Vincent Dietemann ◽  
Markus Neuditschko ◽  
Benjamin Dainat

Abstract Background In spite of the implementation of control strategies in honey bee (Apis mellifera) keeping, the invasive parasitic mite Varroa destructor remains one of the main causes of colony losses in numerous countries. Therefore, this parasite represents a serious threat to beekeeping and agro-ecosystems that benefit from the pollination services provided by honey bees. To maintain their stocks, beekeepers have to treat their colonies with acaricides every year. Selecting lineages that are resistant to infestations is deemed to be a more sustainable approach. Review Over the last three decades, numerous selection programs have been initiated to improve the host–parasite relationship and to support honey bee survival in the presence of the parasite without the need for acaricide treatments. Although resistance traits have been included in the selection strategy of honey bees, it has not been possible to globally solve the V. destructor problem. In this study, we review the literature on the reasons that have potentially limited the success of such selection programs. We compile the available information to assess the relevance of selected traits and the potential environmental effects that distort trait expression and colony survival. Limitations to the implementation of these traits in the field are also discussed. Conclusions Improving our knowledge of the mechanisms underlying resistance to V. destructor to increase trait relevance, optimizing selection programs to reduce environmental effects, and communicating selection outcomes are all crucial to efforts aiming at establishing a balanced relationship between the invasive parasite and its new host.


2017 ◽  
Vol 91 (16) ◽  
Author(s):  
Emily J. Remnant ◽  
Mang Shi ◽  
Gabriele Buchmann ◽  
Tjeerd Blacquière ◽  
Edward C. Holmes ◽  
...  

ABSTRACT Understanding the diversity and consequences of viruses present in honey bees is critical for maintaining pollinator health and managing the spread of disease. The viral landscape of honey bees (Apis mellifera) has changed dramatically since the emergence of the parasitic mite Varroa destructor, which increased the spread of virulent variants of viruses such as deformed wing virus. Previous genomic studies have focused on colonies suffering from infections by Varroa and virulent viruses, which could mask other viral species present in honey bees, resulting in a distorted view of viral diversity. To capture the viral diversity within colonies that are exposed to mites but do not suffer the ultimate consequences of the infestation, we examined populations of honey bees that have evolved naturally or have been selected for resistance to Varroa. This analysis revealed seven novel viruses isolated from honey bees sampled globally, including the first identification of negative-sense RNA viruses in honey bees. Notably, two rhabdoviruses were present in three geographically diverse locations and were also present in Varroa mites parasitizing the bees. To characterize the antiviral response, we performed deep sequencing of small RNA populations in honey bees and mites. This provided evidence of a Dicer-mediated immune response in honey bees, while the viral small RNA profile in Varroa mites was novel and distinct from the response observed in bees. Overall, we show that viral diversity in honey bee colonies is greater than previously thought, which encourages additional studies of the bee virome on a global scale and which may ultimately improve disease management. IMPORTANCE Honey bee populations have become increasingly susceptible to colony losses due to pathogenic viruses spread by parasitic Varroa mites. To date, 24 viruses have been described in honey bees, with most belonging to the order Picornavirales. Collapsing Varroa-infected colonies are often overwhelmed with high levels of picornaviruses. To examine the underlying viral diversity in honey bees, we employed viral metatranscriptomics analyses on three geographically diverse Varroa-resistant populations from Europe, Africa, and the Pacific. We describe seven novel viruses from a range of diverse viral families, including two viruses that are present in all three locations. In honey bees, small RNA sequences indicate that these viruses are processed by Dicer and the RNA interference pathway, whereas Varroa mites produce strikingly novel small RNA patterns. This work increases the number and diversity of known honey bee viruses and will ultimately contribute to improved disease management in our most important agricultural pollinator.


2021 ◽  
Vol 1 ◽  
Author(s):  
Lina Zhang ◽  
Yanchun Deng ◽  
Hongxia Zhao ◽  
Ming Zhang ◽  
Chunsheng Hou

Honey bees play a vital role in providing pollination services for agricultural crops and wild flowering plants. However, the spillover risk of their pathogens to other pollinators or wild insects is becoming a cause for concern. There is some evidence that stingless bees can carry honey bee viruses, but little is known about the presence of honey bee viruses in stingless bees in China. Here, we investigate the occurrence of major honey bee pathogens including bacteria, fungi, and viruses in stingless bees (Apidae: sp.). Our results show that the stingless bees (Apidae: sp.) were mainly infected with DWV-A, but no DWV-B and DWV-C. Phylogenetic analysis on fragments of lp, RdRp, and VP3 of DWV-A indicated that genetic variation in VP3 might an important indicator for host-specific viruses, but it requires further study. Our results indicated that DWV-A is not only the major strain of virus currently circulating in managed bee colonies in China and globally, but in stingless bee species as a whole.


2021 ◽  
Vol 8 ◽  
Author(s):  
Timothy C. Cameron ◽  
Danielle Wiles ◽  
Travis Beddoe

Approximately one-third of the typical human Western diet depends upon pollination for production, and honey bees (Apis mellifera) are the primary pollinators of numerous food crops, including fruits, nuts, vegetables, and oilseeds. Regional large scale losses of managed honey bee populations have increased significantly during the last decade. In particular, asymptomatic infection of honey bees with viruses and bacterial pathogens are quite common, and co-pathogenic interaction with other pathogens have led to more severe and frequent colony losses. Other multiple environmental stress factors, including agrochemical exposure, lack of quality forage, and reduced habitat, have all contributed to the considerable negative impact upon bee health. The ability to accurately diagnose diseases early could likely lead to better management and treatment strategies. While many molecular diagnostic tests such as real-time PCR and MALDI-TOF mass spectrometry have been developed to detect honey bee pathogens, they are not field-deployable and thus cannot support local apiary husbandry decision-making for disease control. Here we review the field-deployable technology termed loop-mediated isothermal amplification (LAMP) and its application to diagnose honey bee infections.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 575 ◽  
Author(s):  
John M. K. Roberts ◽  
Nelson Simbiken ◽  
Chris Dale ◽  
Joel Armstrong ◽  
Denis L. Anderson

The global spread of the parasitic mite Varroa destructor has emphasized the significance of viruses as pathogens of honey bee (Apis mellifera) populations. In particular, the association of deformed wing virus (DWV) with V. destructor and its devastating effect on honey bee colonies has led to that virus now becoming one of the most well-studied insect viruses. However, there has been no opportunity to examine the effects of Varroa mites without the influence of DWV. In Papua New Guinea (PNG), the sister species, V. jacobsoni, has emerged through a host-shift to reproduce on the local A. mellifera population. After initial colony losses, beekeepers have maintained colonies without chemicals for more than a decade, suggesting that this bee population has an unknown mite tolerance mechanism. Using high throughput sequencing (HTS) and target PCR detection, we investigated whether the viral landscape of the PNG honey bee population is the underlying factor responsible for mite tolerance. We found A. mellifera and A. cerana from PNG and nearby Solomon Islands were predominantly infected by sacbrood virus (SBV), black queen cell virus (BQCV) and Lake Sinai viruses (LSV), with no evidence for any DWV strains. V. jacobsoni was infected by several viral homologs to recently discovered V. destructor viruses, but Varroa jacobsoni rhabdovirus-1 (ARV-1 homolog) was the only virus detected in both mites and honey bees. We conclude from these findings that A. mellifera in PNG may tolerate V. jacobsoni because the damage from parasitism is significantly reduced without DWV. This study also provides further evidence that DWV does not exist as a covert infection in all honey bee populations, and remaining free of this serious viral pathogen can have important implications for bee health outcomes in the face of Varroa.


Sign in / Sign up

Export Citation Format

Share Document