scholarly journals Are indigenous territories and community-managed areas effective natural climate solutions? A neotropical analysis using matching methods and geographic discontinuity designs

2020 ◽  
Author(s):  
Camilo Alejo ◽  
Chris Meyer ◽  
Wayne S. Walker ◽  
Seth R. Gorelik ◽  
Carmen Josse ◽  
...  

AbstractIndigenous Territories (ITs) and Community Managed Protected Areas (PAs) with less restriction on forest use than integral PAs may represent cost-effective natural climate solutions to meet the Paris agreement. However, the literature has been limited to examining the effect of ITs and Community Managed PAs on deforestation, despite the influence of anthropogenic degradation. Thus, little is known about the temporal and spatial effect of allocating ITs and Community Managed PAs on carbon stocks dynamics that account for losses from deforestation and degradation. Using Amazon Basin countries and Panama at the national level, and Petén (Guatemala) and Acre (Brazil) at the subnational level, this study aims to estimate the temporal and spatial effects of ITs and PAs on carbon stocks. To estimate the temporal effects, we use annual carbon density maps, matching analysis, and linear mixed models. Furthermore, we explore the spatial biases derived from matching analysis and use geographic discontinuity designs to assess the spatial effect of PAs and ITs boundaries on carbon stocks. The temporal effects highlight that allocating ITs preserves carbon stocks and buffer losses as PAs in Panama and Amazon Basin countries. Community Managed PAs temporal effect on carbon stocks surpasses that of integral PAs in Petén (Guatemala) and Acre (Brazil). The geographic discontinuity designs reveal that ITs and Community Managed PAs boundaries secure more extensive carbon stocks than their surroundings, and this difference tends to increase towards the least accessible areas. These results also suggest that indigenous and community land-use in neotropical forests may have a limited and stable spatial impact on carbon stocks. Our findings imply that ITs and Community Managed PAs in neotropical forests support Nationally Determined Contributions (NDCs) under the Paris Agreement. Thus, Indigenous peoples and local communities must become recipients of countries’ results-based payments.

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0245110
Author(s):  
Camilo Alejo ◽  
Chris Meyer ◽  
Wayne S. Walker ◽  
Seth R. Gorelik ◽  
Carmen Josse ◽  
...  

Indigenous Territories (ITs) with less centralized forest governance than Protected Areas (PAs) may represent cost-effective natural climate solutions to meet the Paris agreement. However, the literature has been limited to examining the effect of ITs on deforestation, despite the influence of anthropogenic degradation. Thus, little is known about the temporal and spatial effect of allocating ITs on carbon stocks dynamics that account for losses from deforestation and degradation. Using Amazon Basin countries and Panama, this study aims to estimate the temporal and spatial effects of ITs and PAs on carbon stocks. To estimate the temporal effects, we use annual carbon density maps, matching analysis, and linear mixed models. Furthermore, we explore the spatial heterogeneity of these estimates through geographic discontinuity designs, allowing us to assess the spatial effect of ITs and PAs boundaries on carbon stocks. The temporal effects highlight that allocating ITs preserves carbon stocks and buffer losses as well as allocating PAs in Panama and Amazon Basin countries. The geographic discontinuity designs reveal that ITs’ boundaries secure more extensive carbon stocks than their surroundings, and this difference tends to increase towards the least accessible areas, suggesting that indigenous land use in neotropical forests may have a temporarily and spatially stable impact on carbon stocks. Our findings imply that ITs in neotropical forests support Nationally Determined Contributions (NDCs) under the Paris Agreement. Thus, Indigenous peoples must become recipients of countries’ results-based payments.


2022 ◽  
Vol 4 ◽  
Author(s):  
Andre S. Rovai ◽  
Robert R. Twilley ◽  
Thomas A. Worthington ◽  
Pablo Riul

Mangroves are known for large carbon stocks and high sequestration rates in biomass and soils, making these intertidal wetlands a cost-effective strategy for some nations to compensate for a portion of their carbon dioxide (CO2) emissions. However, few countries have the national-level inventories required to support the inclusion of mangroves into national carbon credit markets. This is the case for Brazil, home of the second largest mangrove area in the world but lacking an integrated mangrove carbon inventory that captures the diversity of coastline types and climatic zones in which mangroves are present. Here we reviewed published datasets to derive the first integrated assessment of carbon stocks, carbon sequestration rates and potential CO2eq emissions across Brazilian mangroves. We found that Brazilian mangroves hold 8.5% of the global mangrove carbon stocks (biomass and soils combined). When compared to other Brazilian vegetated biomes, mangroves store up to 4.3 times more carbon in the top meter of soil and are second in biomass carbon stocks only to the Amazon forest. Moreover, organic carbon sequestration rates in Brazilian mangroves soils are 15–30% higher than recent global estimates; and integrated over the country’s area, they account for 13.5% of the carbon buried in world’s mangroves annually. Carbon sequestration in Brazilian mangroves woody biomass is 10% of carbon accumulation in mangrove woody biomass globally. Our study identifies Brazilian mangroves as a major global blue carbon hotspot and suggest that their loss could potentially release substantial amounts of CO2. This research provides a robust baseline for the consideration of mangroves into strategies to meet Brazil’s intended Nationally Determined Contributions.


2021 ◽  
Vol 7 (23) ◽  
pp. eabd6034
Author(s):  
C. Ronnie Drever ◽  
Susan C. Cook-Patton ◽  
Fardausi Akhter ◽  
Pascal H. Badiou ◽  
Gail L. Chmura ◽  
...  

Alongside the steep reductions needed in fossil fuel emissions, natural climate solutions (NCS) represent readily deployable options that can contribute to Canada’s goals for emission reductions. We estimate the mitigation potential of 24 NCS related to the protection, management, and restoration of natural systems that can also deliver numerous co-benefits, such as enhanced soil productivity, clean air and water, and biodiversity conservation. NCS can provide up to 78.2 (41.0 to 115.1) Tg CO2e/year (95% CI) of mitigation annually in 2030 and 394.4 (173.2 to 612.4) Tg CO2e cumulatively between 2021 and 2030, with 34% available at ≤CAD 50/Mg CO2e. Avoided conversion of grassland, avoided peatland disturbance, cover crops, and improved forest management offer the largest mitigation opportunities. The mitigation identified here represents an important potential contribution to the Paris Agreement, such that NCS combined with existing mitigation plans could help Canada to meet or exceed its climate goals.


2019 ◽  
Vol 93 ◽  
pp. 208-220 ◽  
Author(s):  
Edward A. Morgan ◽  
Johanna Nalau ◽  
Brendan Mackey

2020 ◽  
Vol 117 (6) ◽  
pp. 3015-3025 ◽  
Author(s):  
Wayne S. Walker ◽  
Seth R. Gorelik ◽  
Alessandro Baccini ◽  
Jose Luis Aragon-Osejo ◽  
Carmen Josse ◽  
...  

Maintaining the abundance of carbon stored aboveground in Amazon forests is central to any comprehensive climate stabilization strategy. Growing evidence points to indigenous peoples and local communities (IPLCs) as buffers against large-scale carbon emissions across a nine-nation network of indigenous territories (ITs) and protected natural areas (PNAs). Previous studies have demonstrated a link between indigenous land management and avoided deforestation, yet few have accounted for forest degradation and natural disturbances—processes that occur without forest clearing but are increasingly important drivers of biomass loss. Here we provide a comprehensive accounting of aboveground carbon dynamics inside and outside Amazon protected lands. Using published data on changes in aboveground carbon density and forest cover, we track gains and losses in carbon density from forest conversion and degradation/disturbance. We find that ITs and PNAs stored more than one-half (58%; 41,991 MtC) of the region’s carbon in 2016 but were responsible for just 10% (−130 MtC) of the net change (−1,290 MtC). Nevertheless, nearly one-half billion tons of carbon were lost from both ITs and PNAs (−434 MtC and −423 MtC, respectively), with degradation/disturbance accounting for >75% of the losses in 7 countries. With deforestation increasing, and degradation/disturbance a neglected but significant source of region-wide emissions (47%), our results suggest that sustained support for IPLC stewardship of Amazon forests is critical. IPLCs provide a global environmental service that merits increased political protection and financial support, particularly if Amazon Basin countries are to achieve their commitments under the Paris Climate Agreement.


2015 ◽  
Vol 40 (04) ◽  
pp. 937-968 ◽  
Author(s):  
Maria Akchurin

In 2008, Ecuador became the first country to grant legal rights to nature. In this article, I examine how this happened. I show that while proponents of nature's rights acted during a key political moment, their efforts were successful due to the presence of environmentalist social movements that elevated the environmental agenda at the national level during prior decades, and due to the power of indigenous organizations and their call to recognize Ecuador as a “plurinational” polity, demanding respect for indigenous territories and ways of life and incorporating politicized versions of indigenous beliefs about the environment. The study considers the consequences of mobilization for legal innovation and institutional change, and shows the complexity of struggles over the environment in the global South. It is based on research at the Ecuadorian National Legislative Assembly archive, semistructured interviews with respondents involved in the politics of nature and the constitutional assembly, and secondary historical sources.


2020 ◽  
Author(s):  
Milton Serpa de Meira-Junior ◽  
José Roberto Rodrigues Pinto ◽  
Natália Oliveira Ramos ◽  
Eder Pereira Miguel ◽  
Ricardo de Oliveira Gaspar ◽  
...  

Abstract Background Long-term studies of community and population dynamics indicate that abrupt disturbances often catalyse changes in vegetation and carbon stocks. These disturbances include the opening of clearings, flooding, rainfall seasonality, and drought, as well as fire and direct human disturbance. Such events may be super-imposed on longer-term trends in disturbance, such as those associated with climate change (heating, drying), as well as resources. Intact neotropical forests have recently experienced increased drought frequency and fire, on top of pervasive increases in atmospheric CO2 concentrations, but we lack long-term records of responses to such changes especially in the critical transitional areas at the interface of forest and savanna biomes. Here, we present results from 20 years monitoring a valley forest (moist tropical forest outlier) in central Brazil. The forest has experienced multiple drought events and includes plots which have and which have not experienced fire. We focus on how forest structure (stem density and aboveground biomass carbon) and dynamics (stem and biomass mortality and recruitment) have responded to these disturbance regimes. ResultsOverall, the biomass carbon stock increased due to the growth of the trees already present in the forest, without any increase in the overall number of tree stems. Over time, both recruitment and especially mortality of trees tended to increase, and periods of prolonged drought in particular resulted in increased mortality rates of larger trees. This increased mortality was in turn responsible for a decline in aboveground carbon toward the end of the monitoring period. Fire in 2010, which occurred in only some of our plots, tended to exacerbate the trends of increasing mortality and losses of biomass carbon. Conclusion Prolonged droughts influence the mortality of large trees, leading to a decline in aboveground carbon stocks. Here, and in other neotropical forests, recent droughts are capable of shutting down and reversing biomass carbon sinks. These new results add to evidence that anthropogenic climate changes are already adversely impacting tropical forests.


Sign in / Sign up

Export Citation Format

Share Document