scholarly journals Salivary SARS-CoV-2 antigen rapid detection: a prospective cohort study

Author(s):  
Daniela Basso ◽  
Ada Aita ◽  
Andrea Padoan ◽  
Chiara Cosma ◽  
Filippo Navaglia ◽  
...  

AbstractBackgroundSARS-CoV-2 quick testing and reporting are now considered relevant for the containment of new pandemic waves. Antigen testing in self-collected saliva might be useful. We compared the diagnostic performance of salivary and naso-pharyngeal swab (NPS) SARS-CoV-2 antigen detection by a rapid chemiluminescent assay (CLEIA) and two different point-of-care (POC) immunochromatographic assays, with that of molecular testing.Methods234 patients were prospectively enrolled. Paired self-collected saliva (Salivette) and NPS were obtained to perform rRT-PCR, chemiluminescent (Lumipulse G) and POC (NPS: Fujirebio and Abbott; saliva: Fujirebio) for SARS-CoV-2 antigen detection.ResultsThe overall agreement between NPS and saliva rRT-PCR was 78.7%, reaching 91.7% at the first week from symptoms onset. SARS-CoV-2 CLEIA antigen was highly accurate in distinguishing between positive and negative NPS (ROC-AUC=0.939, 95%CI:0.903-0.977), with 81.6% sensitivity and 93.8% specificity. This assay on saliva had an overall good accuracy (ROC-AUC=0.805, 95%CI:0.740-0.870), reaching the optimal value within 7 days from symptom onset (Sensitivity: 72%; Specificity: 97%). POC antigen in saliva had a very limited sensitivity (13%), performing better in NPS (Sensitivity: 48% and 66%; Specificity: 100% and 99% for Espline and Abbott respectively), depending on viral loads.ConclusionsSelf-collected saliva is a valid alternative to NPS for SARS-CoV-2 detection not only by molecular, but also by CLEIA antigen testing, for which the highest diagnostic accuracy was achieved in the first week from symptom onset. Saliva is not suitable for POC, although the accuracy of these tests appears satisfactory for NPS with high viral load.

Author(s):  
Felix Buder ◽  
Markus Bauswein ◽  
Clara L Magnus ◽  
Franz Audebert ◽  
Henriette Lang ◽  
...  

Abstract Background From a public health perspective, effective containment strategies for SARS-CoV-2 should be balanced with individual liberties. Methods We collected 79 respiratory samples from 59 patients monitored in an outpatient center or in the intensive care unit of the University Hospital Regensburg. We analyzed viral load by quantitative real-time PCR, viral antigen by point-of-care assay, time since onset of symptoms and presence of SARS-CoV-2 IgG antibodies in the context of virus isolation from respiratory specimen. Results The odds ratio for virus isolation increased 1.9-fold for each log10 level of SARS-CoV-2 RNA and 7.4-fold with detection of viral antigen, while it decreased 6.3-fold beyond 10 days of symptoms and 20.0-fold with presence of SARS-CoV-2 antibodies. The latter was confirmed for B.1.1.7 strains. The positive predictive value for virus isolation was 60.0% for viral loads above 10 7 RNA copies/mL and 50.0% for the presence of viral antigen. Symptom onset before 10 days and seroconversion predicted lack of infectivity with 93.8% and 96.0%. Conclusions Our data support quarantining patients with high viral load and detection of viral antigen, and lifting restrictive measures with increasing time to symptom onset and seroconversion. Delay of antibody formation may prolong infectivity.


Diagnosis ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Camilla Mattiuzzi ◽  
Brandon M. Henry ◽  
Giuseppe Lippi

AbstractAlthough the most effective strategy for preventing or containing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks relies on early diagnosis, the paramount and unprecedented number of tests needed to fully achieve this target is overwhelming worldwide testing supply and capacity. Molecular detection of SARS-CoV-2 RNA in nasopharyngeal swabs is still considered the reference diagnostic approach. Nonetheless, identification of SARS-CoV-2 proteins in upper respiratory tract specimens and/or saliva by means of rapid (antigen) immunoassays is emerging as a promising screening approach. These tests have some advantages compared to molecular analysis, such as point of care availability, no need of skilled personnel and dedicated instrumentation, lower costs and short turnaround time. However, these advantages are counterbalanced by lower diagnostic sensitivity compared to molecular testing, which would only enable to identifying patients with higher SARS-CoV-2 viral load. The evidence accumulated to-date has hence persuaded us to develop a tentative algorithm, which would magnify the potential benefits of rapid antigen testing in SARS-CoV-2 diagnostics.


Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 561
Author(s):  
Mariana Ulinici ◽  
Serghei Covantev ◽  
James Wingfield-Digby ◽  
Apostolos Beloukas ◽  
Alexander G. Mathioudakis ◽  
...  

While molecular testing with real-time polymerase chain reaction (RT-PCR) remains the gold-standard test for COVID-19 diagnosis and screening, more rapid or affordable molecular and antigen testing options have been developed. More affordable, point-of-care antigen testing, despite being less sensitive compared to molecular assays, might be preferable for wider screening initiatives. Simple laboratory, imaging and clinical parameters could facilitate prognostication and triage. This comprehensive review summarises current evidence on the diagnostic, screening and prognostic tests for COVID-19.


Diagnosis ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Gian Luca Salvagno ◽  
Gianluca Gianfilippi ◽  
Damiano Bragantini ◽  
Brandon M. Henry ◽  
Giuseppe Lippi

Abstract Objectives Novel point-of-care antigen assays present a promising opportunity for rapid screening of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The purpose of this study was the clinical assessment of the new Roche SARS-CoV-2 Rapid Antigen Test. Methods The clinical performance of Roche SARS-CoV-2 Rapid Antigen Test was evaluated vs. a reverse transcription polymerase chain reaction (RT-PCR) laboratory-based assay (Seegene AllplexTM2019-nCoV) in nasopharyngeal swabs collected from a series of consecutive patients referred for SARS-CoV-2 diagnostics to the Pederzoli Hospital (Peschiera del Garda, Verona, Italy) over a 2-week period. Results The final study population consisted of 321 consecutive patients (mean age, 46 years and IQR, 32–56 years; 181 women, 56.4%), with 149/321 (46.4%) positive for SARS-CoV-2 RNA via the Seegene AllplexTM2019-nCoV Assay, and 109/321 (34.0%) positive with Roche SARS-CoV-2 Rapid Antigen Test, respectively. The overall accuracy of Roche SARS-CoV-2 Rapid Antigen Test compared to molecular testing was 86.9%, with 72.5% sensitivity and 99.4% specificity. Progressive decline in performance was observed as cycle threshold (Ct) values of different SARS-CoV-2 gene targets increased. The sensitivity was found to range between 97–100% in clinical samples with Ct values <25, between 50–81% in those with Ct values between 25 and <30, but low as 12–18% in samples with Ct values between 30 and <37. Conclusions The clinical performance of Roche SARS-CoV-2 Rapid Antigen Test is excellent in nasopharyngeal swabs with Ct values <25, which makes it a reliable screening test in patients with high viral load. However, mass community screening would require the use of more sensitive techniques.


2010 ◽  
Vol 138 (12) ◽  
pp. 1796-1803 ◽  
Author(s):  
J. P. WATT ◽  
J. C. MOÏSI ◽  
R. L. A. DONALDSON ◽  
R. REID ◽  
S. FERRO ◽  
...  

SUMMARYStreptococcus pneumoniaeis a common cause of community-acquired pneumonia (CAP) but existing diagnostic tools have limited sensitivity and specificity. We enrolled adults undergoing chest radiography at three Indian Health Service clinics in the Southwestern United States and collected acute and convalescent serum for measurement of PsaA and PspA titres and urine for pneumococcal antigen detection. Blood and sputum cultures were obtained at the discretion of treating physicians. We compared findings in clinical and radiographic CAP patients to those in controls without CAP. Urine antigen testing showed the largest differential between CAP patients and controls (clinical CAP 13%, radiographic CAP 17%, control groups 2%). Serological results were mixed, with significant differences between CAP patients and controls for some, but not all changes in titre. Based on urine antigen and blood culture results, we estimated that 11% of clinical and 15% of radiographic CAP cases were due to pneumococcus in this population.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2071
Author(s):  
Marcello Lanari ◽  
Giovanni Battista Biserni ◽  
Matteo Pavoni ◽  
Eva Caterina Borgatti ◽  
Marta Leone ◽  
...  

The gold standard for diagnosis of SARS-CoV-2 infection has been nucleic acid amplification tests (NAAT). However, rapid antigen detection kits (Ag-RDTs), may offer advantages over NAAT in mass screening, generating results in minutes, both as laboratory-based test or point-of-care (POC) use for clinicians, at a lower cost. We assessed two different POC Ag-RDTs in mass screening versus NAAT for SARS-CoV-2 in a cohort of pediatric patients admitted to the Pediatric Emergency Unit of IRCCS—Polyclinic of Sant’Orsola, Bologna (from November 2020 to April 2021). All patients were screened with nasopharyngeal swabs for the detection of SARS-CoV-2-RNA and for antigen tests. Results were obtained from 1146 patients. The COVID-19 Ag FIA kit showed a baseline sensitivity of 53.8% (CI 35.4–71.4%), baseline specificity 99.7% (CI 98.4–100%) and overall accuracy of 80% (95% CI 0.68–0.91); the AFIAS COVID-19 Ag kit, baseline sensitivity of 86.4% (CI 75.0–93.9%), baseline specificity 98.3% (CI 97.1–99.1%) and overall accuracy of 95.3% (95% CI 0.92–0.99). In both tests, some samples showed very low viral load and negative Ag-RDT. This disagreement may reflect the positive inability of Ag-RDTs of detecting antigen in late phase of infection. Among all cases with positive molecular test and negative antigen test, none showed viral loads > 106 copies/mL. Finally, we found one false Ag-RDTs negative result (low cycle thresholds; 9 × 105 copies/mL). Our results suggest that both Ag-RDTs showed good performances in detection of high viral load samples, making it a feasible and effective tool for mass screening in actively infected children.


2021 ◽  
Vol 10 (33) ◽  
pp. 2734-2739
Author(s):  
Akshay K. Langalia ◽  
Dolly P. Patel ◽  
Aravind D. Kumbhar ◽  
Hetal J. Maheshwari ◽  
Shubhangi K. Vyas ◽  
...  

BACKGROUND Assessment of the results of large-scale rapid antigen diagnostic (RAD) testing for detection of SARS-CoV-2 amongst incoming passengers was carried out by Ahmedabad Municipal Corporation (AMC) Dental College Students at the Central Railway Station of Ahmedabad city. We wanted to determine the sensitivity and specificity of RAD testing for detection of Covid-19 amongst passengers disembarking from scheduled trains arriving at the Central Railway Terminus of Ahmedabad city. METHODS Under the campaign “Chase the Virus” launched by Ahmedabad Municipal Corporation (AMC), Interns & Final Year students of AMC Dental College were trained to carry out rapid antigen testing of scheduled trains running on special routes starting from 07 / 09 / 2020 to 05 / 10 / 2020. 14 dental teams were deputed at a temporary testing facility formulated for day-to-day testing at the Central Station using the standalone Standard - Q Covid-19 Ag testing kit (SD Biosensor, South Korea). RESULTS In total, 18901 travellers were tested in a span of 26 days out of which 324 tested positive with an overall percentage positivity of 1.71 %. An average number of 727 (± 182) tests were performed with an overall sensitivity of 66.01 % and specificity of 99.71 %. CONCLUSIONS In response to the growing Covid-19 pandemic and complexity of laboratory-based molecular tests, rapid antigen detection tests have proved to be efficient in the easier and faster diagnosis of the passengers in such point of care settings. KEY WORDS Rapid Antigen Detection Test, Covid-19, SARS-CoV-2


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249972
Author(s):  
Oh Joo Kweon ◽  
Yong Kwan Lim ◽  
Hye Ryoun Kim ◽  
Yoojeong Choi ◽  
Min-Chul Kim ◽  
...  

We evaluated the diagnostic accuracy of two newly developed, point-of-care, rapid antigen tests (RATs) for detecting SARS-CoV-2, the AFIAS COVID-19 Ag and the ichromaTM COVID-19 Ag, and investigated antigen kinetics. A total of 200 serially collected nasopharyngeal (NP) specimens from 38 COVID-19 patients and 122 specimens from negative controls were analyzed. Diagnostic sensitivity and specificity were assessed in comparison to molecular test results and subdivided according to targeted genes (E, RdRP, and N) and days post-symptom onset (PSO). For the kinetics evaluation, cut-off-indices from serial NP specimens were used according to the number of days PSO. Both RATs showed sensitivity of 91.3‒100% for specimens with cycle threshold (Ct) < 25. The specificity of AFIAS was 98.7‒98.9% and that of ichromaTM was 100.0%. The kappa values of AFIAS and ichromaTM for the molecular testing of specimens with Ct < 25 (RdRP) were 0.97 and 1.00, respectively. The sensitivity of AFIAS and ichromaTM for all genes was lower for specimens collected at 8‒14 PSO than for those collected before 7-days PSO. The kinetics profiles showed that antigen levels gradually decreased from ≤ 7-days PSO to > 22-days PSO. Both RATs showed excellent specificity and acceptable sensitivity for NP specimens with higher viral loads and for specimens collected within 7-days PSO. Hence, they have the potential to become useful tools for the early detection of SARS-CoV-2. However, because of concerns about false negativity, RATs should be used in conjunction with molecular tests.


2021 ◽  
Author(s):  
Gerson Shigeru Kobayashi ◽  
Luciano Abreu Brito ◽  
Danielle De Paula Moreira ◽  
Angela May Suzuki ◽  
Gabriella Shih Ping Hsia ◽  
...  

Objectives: Rapid diagnostics is pivotal to curb SARS-CoV-2 transmission, and saliva has emerged as a practical alternative to naso/oropharyngeal (NOP) specimens. We aimed to develop a direct RT-LAMP workflow for viral detection in saliva, and to provide more information regarding its potential in COVID-19 diagnostics. Methods: Clinical and contrived specimens were used to screen/optimize formulations and sample processing protocols. Salivary viral load was determined in symptomatic patients to evaluate clinical performance (n = 90) and to characterize saliva based on age, gender and time from onset of symptoms (n = 49). Results: The devised workflow achieved 93.2% sensitivity, 97% specificity, and 0.895 Kappa for salivas containing >102 copies/μL. Further analyses in saliva showed peak viral load in the first days of symptoms and lower viral loads in females, particularly among young individuals (<38 years). NOP RT-PCR data did not yield relevant associations. Conclusions: This novel saliva RT-LAMP workflow can be applied to point-of-care testing. This work reinforces that saliva better correlates with transmission dynamics than NOP specimens, and reveals gender differences that may reflect higher transmission by males. To maximize detection, testing should be done immediately after symptom onset, especially in females.


2020 ◽  
Author(s):  
Naveen K. Singh ◽  
Partha Ray ◽  
Aaron F. Carlin ◽  
Celestine Magallanes ◽  
Sydney C. Morgan ◽  
...  

AbstractSignificant barriers to the diagnosis of latent and acute SARS-CoV-2 infection continue to hamper population-based screening efforts required to contain the COVID-19 pandemic in the absence of effective antiviral therapeutics or vaccines. We report an aptamer-based SARS-CoV-2 salivary antigen assay employing only low-cost reagents ($3.20/test) and an off-the-shelf glucometer. The test was engineered around a glucometer as it is quantitative, easy to use, and the most prevalent piece of diagnostic equipment globally making the test highly scalable with an infrastructure that is already in place. Furthermore, many glucometers connect to smartphones providing an opportunity to integrate with contract tracing apps, medical providers, and electronic medical records. In clinical testing, the developed assay detected SARS-CoV-2 infection in patient saliva across a range of viral loads - as benchmarked by RT-qPCR - within one hour, with 100% sensitivity (positive percent agreement) and distinguished infected specimens from off-target antigens in uninfected controls with 100% specificity (negative percent agreement). We propose that this approach can provide an inexpensive, rapid, and accurate diagnostic for distributed screening of SARS-CoV-2 infection at scale.


Sign in / Sign up

Export Citation Format

Share Document