scholarly journals Effector-independent brain network for auditory-motor integration: fMRI evidence from singing and cello playing

2020 ◽  
Author(s):  
Melanie Segado ◽  
Robert J. Zatorre ◽  
Virginia B. Penhune

AbstractMany everyday tasks share high-level sensory goals but differ in the movements used to accomplish them. One example of this is musical pitch regulation, where the same notes can be produced using the vocal system or a musical instrument controlled by the hands. Cello playing has previously been shown to rely on brain structures within the singing network for performance of single notes, except in areas related to primary motor control, suggesting that the brain networks for auditory feedback processing and sensorimotor integration may be shared (Segado et al. 2018). However, research has shown that singers and cellists alike can continue singing/playing in tune even in the absence of auditory feedback (Chen et al. 2013, Kleber et al. 2013), so different paradigms are required to test feedback monitoring and control mechanisms. In singing, auditory pitch feedback perturbation paradigms have been used to show that singers engage a network of brain regions including anterior cingulate cortex (ACC), anterior insula (aINS), and intraparietal sulcus (IPS) when compensating for incorrect pitch feedback, and posterior superior temporal gyrus (pSTG) and supramarginal gyrus (SMG) when ignoring it (Zarate et al. 2005, 2008). To determine whether the brain networks for cello playing and singing directly overlap in these sensory-motor integration areas, in the present study expert cellists were asked to compensate for or ignore introduced pitch perturbations when singing/playing during fMRI scanning. We found that cellists were able to sing/play target tones, and compensate for and ignore introduced feedback perturbations equally well. Brain activity overlapped for singing and playing in IPS and SMG when compensating, and pSTG and dPMC when ignoring; differences between singing/playing across all three conditions were most prominent in M1, centered on the relevant motor effectors (hand, larynx). These findings support the hypothesis that pitch regulation during cello playing relies on structures within the singing network and suggests that differences arise primarily at the level of forward motor control.HighlightsExpert cellists were asked to compensate for or ignore introduced pitch perturbations when singing/playing during fMRI scanning.Cellists were able to sing/play target tones, and compensate for and ignore introduced feedback perturbations equally well.Brain activity overlapped for singing and playing in IPS and SMG when compensating, and pSTG and dPMC when ignoring.Differences between singing/playing across were most prominent in M1, centered around the relevant motor effectors (hand, larynx)Findings support the hypothesis that pitch regulation during cello playing relies on structures within the singing network with differences arising primarily at the level of forward motor control

2020 ◽  
Vol 30 (8) ◽  
pp. 4515-4527 ◽  
Author(s):  
Dongxu Liu ◽  
Guangyan Dai ◽  
Churong Liu ◽  
Zhiqiang Guo ◽  
Zhiqin Xu ◽  
...  

Abstract The dorsolateral prefrontal cortex (DLPFC) has been implicated in auditory–motor integration for accurate control of vocal production, but its precise role in this feedback-based process remains largely unknown. To this end, the present event-related potential study applied a transcranial magnetic stimulation (TMS) protocol, continuous theta-burst stimulation (c-TBS), to disrupt cortical activity in the left DLPFC as young adults vocalized vowel sounds while hearing their voice unexpectedly shifted upwards in pitch. The results showed that, as compared to the sham condition, c-TBS over left DLPFC led to significantly larger vocal compensations for pitch perturbations that were accompanied by significantly smaller cortical P2 responses. Source localization analyses revealed that this brain activity pattern was the result of reduced activation in the left superior frontal gyrus and right inferior parietal lobule (supramarginal gyrus). These findings demonstrate c-TBS-induced modulatory effects of DLPFC on the neurobehavioral processing of vocal pitch regulation, suggesting that disrupting prefrontal function may impair top–down inhibitory control mechanisms that prevent speech production from being excessively influenced by auditory feedback, resulting in enhanced vocal compensations for feedback perturbations. This is the first study that provides direct evidence for a causal role of the left DLPFC in auditory feedback control of vocal production.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A29-A30
Author(s):  
S Kang ◽  
H Ma ◽  
S Cho ◽  
J Kang ◽  
N Kim

Abstract Introduction Patients with insomnia frequently experience sleep/insomnia-related anxiety; this anxiety has been associated with hyperarousal. We investigated the underlying brain function changes in patients with insomnia during emotional task performance that induced sleep/insomnia-related anxiety. Methods Functional magnetic resonance imaging (fMRI) was performed during emotional task performance in healthy individuals and patients with insomnia who met the diagnostic criteria of insomnia disorder based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, and had chronic insomnia for more than 6 months. The participants underwent fMRI scanning during three types of emotional task performance—insomnia-anxiety task, reading sentences that cause insomnia-related anxiety; general-anxiety task, reading sentences that cause anxiety for everyone; and neutral task, reading neutral sentences that do not cause emotional anxiety. The images obtained from fMRI and blood oxygen level-dependent (BOLD) signal changes were compared between patients with insomnia and healthy controls. Interim analysis was performed with the data of 13 patients with insomnia and 9 controls. Results The brain activity in the left anterior cingulate was higher during insomnia-anxiety task performance than that during general-anxiety task performance in the insomnia group (voxel-wise uncorrected p < 0.05; cluster size, 100). In the insomnia group, the brain activity during insomnia-anxiety task performance was not lower in any brain area than that during general-anxiety task performance. Conclusion We show that patients with chronic insomnia experience sleep anxiety related with hyperarousal in the left anterior cingulate area. Additional subject recruitment and re-analysis are needed to confirm the findings of this interim analysis. Support This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032431).


2013 ◽  
Vol 25 (2) ◽  
pp. 219-233 ◽  
Author(s):  
Emilie T. Reas ◽  
James B. Brewer

Neuroimaging studies of episodic memory retrieval have revealed activations in the human frontal, parietal, and medial-temporal lobes that are associated with memory strength. However, it remains unclear whether these brain responses are veritable signals of memory strength or are instead regulated by concomitant subcomponents of retrieval such as retrieval effort or mental search. This study used event-related fMRI during cued recall of previously memorized word-pair associates to dissociate brain responses modulated by memory search from those modulated by the strength of a recalled memory. Search-related deactivations, dissociated from activity due to memory strength, were observed in regions of the default network, whereas distinctly strength-dependent activations were present in superior and inferior parietal and dorsolateral PFC. Both search and strength regulated activity in dorsal anterior cingulate and anterior insula. These findings suggest that, although highly correlated and partially subserved by overlapping cognitive control mechanisms, search and memory strength engage dissociable regions of frontoparietal attention and default networks.


2020 ◽  
Vol 63 (7) ◽  
pp. 2039-2053
Author(s):  
Dante J. Smith ◽  
Cara Stepp ◽  
Frank H. Guenther ◽  
Elaine Kearney

Purpose To better define the contributions of somatosensory and auditory feedback in vocal motor control, a laryngeal perturbation experiment was conducted with and without masking of auditory feedback. Method Eighteen native speakers of English produced a sustained vowel while their larynx was physically and externally displaced on a subset of trials. For the condition with auditory masking, speech-shaped noise was played via earphones at 90 dB SPL. Responses to the laryngeal perturbation were compared to responses by the same participants to an auditory perturbation experiment that involved a 100-cent downward shift in fundamental frequency ( f o ). Responses were also examined in relation to a measure of auditory acuity. Results Compensatory responses to the laryngeal perturbation were observed with and without auditory masking. The level of compensation was greatest in the laryngeal perturbation condition without auditory masking, followed by the condition with auditory masking; the level of compensation was smallest in the auditory perturbation experiment. No relationship was found between the degree of compensation to auditory versus laryngeal perturbations, and the variation in responses in both perturbation experiments was not related to auditory acuity. Conclusions The findings indicate that somatosensory and auditory feedback control mechanisms work together to compensate for laryngeal perturbations, resulting in the greatest degree of compensation when both sources of feedback are available. In contrast, these two control mechanisms work in competition in response to auditory perturbations, resulting in an overall smaller degree of compensation. Supplemental Material https://doi.org/10.23641/asha.12559628


2019 ◽  
Vol 30 (1) ◽  
pp. 241-255 ◽  
Author(s):  
Niels Janssen ◽  
Cristian Camilo Rincón Mendieta

Abstract Holding a conversation means that speech must be started, maintained, and stopped continuously. The brain networks that underlie these aspects of speech motor control remain poorly understood. Here we collected functional magnetic resonance imaging (fMRI) data while participants produced normal and fast rate speech in response to sequences of visually presented objects. We took a non-conventional approach to fMRI data analysis that allowed us to study speech motor behavior as it unfolded over time. To this end, whole-brain fMRI signals were extracted in stimulus-locked epochs using slice-based fMRI. These data were then subjected to group independent component analysis to discover spatially independent networks that were associated with different temporal activation profiles. The results revealed two basic brain networks with different temporal dynamics: a cortical network that was activated continuously during speech production, and a second cortico-subcortical network that increased in activity during the initiation and suppression of speech production. Additional analyses explored whether key areas involved in motor suppression such as the right inferior frontal gyrus, sub-thalamic nucleus and pre-supplementary motor area provide first-order signals to stop speech. The results reveal for the first time the brain networks associated with the initiation, maintenance, and suppression of speech motor behavior.


2001 ◽  
Vol 86 (2) ◽  
pp. 809-823 ◽  
Author(s):  
Dirk Jones ◽  
F. Gonzalez-Lima

Pavlovian conditioning effects on the brain were investigated by mapping rat brain activity with fluorodeoxyglucose (FDG) autoradiography. The goal was to map the effects of the same tone after blocking or eliciting a conditioned emotional response (CER). In the tone-blocked group, previous learning about a light blocked a CER to the tone. In the tone-excitor group, the same pairings of tone with shock US resulted in a CER to the tone in the absence of previous learning about the light. A third group showed no CER after pseudorandom presentations of these stimuli. Brain systems involved in the various associative effects of Pavlovian conditioning were identified, and their functional significance was interpreted in light of previous FDG studies. Three conditioning effects were mapped: 1) blocking effects: FDG uptake was lower in medial prefrontal cortex and higher in spinal trigeminal and cuneate nuclei in the tone-blocked group relative to the tone-excitor group. 2) Contiguity effects: relative to pseudorandom controls, similar FDG uptake increases in the tone-blocked and -excitor groups were found in auditory regions (inferior colliculus and cortex), hippocampus (CA1), cerebellum, caudate putamen, and solitary nucleus. Contiguity effects may be due to tone-shock pairings common to the tone-blocked and -excitor groups rather than their different CER. And 3) excitatory effects: FDG uptake increases limited to the tone-excitor group occurred in a circuit linked to the CER, including insular and anterior cingulate cortex, vertical diagonal band nucleus, anterior hypothalamus, and caudoventral caudate putamen. This study provided the first large-scale map of brain regions underlying the Kamin blocking effect on conditioning. In particular, the results suggest that suppression of prefrontal activity and activation of unconditioned stimulus pathways are important neural substrates of the Kamin blocking effect.


2016 ◽  
Vol 116 (3) ◽  
pp. 1152-1160 ◽  
Author(s):  
Kristin E. Spong ◽  
Esteban C. Rodríguez ◽  
R. Meldrum Robertson

Spreading depolarization (SD) is characterized by a massive redistribution of ions accompanied by an arrest in electrical activity that slowly propagates through neural tissue. It has been implicated in numerous human pathologies, including migraine, stroke, and traumatic brain injury, and thus the elucidation of control mechanisms underlying the phenomenon could have many health benefits. Here, we demonstrate the occurrence of SD in the brain of Drosophila melanogaster, providing a model system, whereby cellular mechanisms can be dissected using molecular genetic approaches. Propagating waves of SD were reliably induced by disrupting the extracellular potassium concentration ([K+]o), either directly or by inhibition of the Na+/K+-ATPase with ouabain. The disturbance was monitored by recording the characteristic surges in [K+]o using K+-sensitive microelectrodes or by monitoring brain activity by measuring direct current potential. With the use of wild-type flies, we show that young adults are more resistant to SD compared with older adults, evidenced by shorter bouts of SD activity and attenuated [K+]o disturbances. Furthermore, we show that the susceptibility to SD differs between wild-type flies and w1118 mutants, demonstrating that our ouabain model is influenced by genetic strain. Lastly, flies with low levels of protein kinase G (PKG) had increased latencies to onset of both ouabain-induced SD and anoxic depolarization compared with flies with higher levels. Our findings implicate the PKG pathway as a modulator of SD in the fly brain, and given the conserved nature of the signaling pathway, it could likely play a similar role during SD in the mammalian central nervous system.


2003 ◽  
Vol 15 (6) ◽  
pp. 785-799 ◽  
Author(s):  
R. Swainson ◽  
R. Cunnington ◽  
G. M. Jackson ◽  
C. Rorden ◽  
A. M. Peters ◽  
...  

We investigated the extent to which a common neural mechanism is involved in task set-switching and response withholding, factors that are frequently confounded in taskswitching and go/no-go paradigms. Subjects' brain activity was measured using event-related electrical potentials (ERPs) and event-related functional MRI (fMRI) neuroimaging in separate studies using the same cognitive paradigm. Subjects made compatible left/right keypress responses to left/right arrow stimuli of 1000 msec duration; they switched every two trials between responding at stimulus onset (GO task—green arrows) and stimulus offset (WAIT task—red arrows). Withholding an immediate response (WAIT vs. GO) elicited an enhancement of the frontal N2 ERP and lateral PFC activation of the right hemisphere, both previously associated with the “nogo” response, but only on switch trials. Task-switching (switch vs. nonswitch) was associated with frontal N2 amplification and right hemisphere ventrolateral PFC activation, but only for the WAIT task. The anterior cingulate cortex (ACC) was the only brain region to be activated for both types of task switch, but this activation was located more rostrally for the WAIT than for the GO switch trials. We conclude that the frontal N2 ERP and lateral PFC activation are not markers for withholding an immediate response or switching tasks per se, but are associated with switching into a response-suppression mode. Different regions within the ACC may be involved in two processes integral to task-switching: processing response conflict (rostral ACC) and overcoming prior response suppression (caudal ACC).


2020 ◽  
Author(s):  
Mario A. Acuña ◽  
Fernando Kasanetz ◽  
Paolo De Luna ◽  
Thomas Nevian

AbstractThe perception of pain arises from distributed brain activity triggered by noxious stimuli. However, which patterns of activity make nociception distinct from other salient sensory experiences is still unknown. Using in vivo chronic two-photon calcium imaging in slightly anaesthetized mice, we identified a nociception-specific representation in the anterior cingulate cortex (ACC), that is attained by a core of neurons that code for a generalized concept of the pain experience. The overall ensemble activity allowed for an efficient discrimination of the sensory space, despite a drift in single-neuron sensory tuning over time. Following sciatic nerve lesion, the representation of nociceptive stimuli was impaired as a consequence of innocuous stimuli expanded into the nociception-specific ensemble, leading to a dysfunctional discrimination of sensory events in the ACC. Thus, the hallmark of chronic pain at the cortical neuronal network level is an impairment of pattern separation and classification identifying a circuit mechanism for altered pain processing in the brain.


2019 ◽  
Author(s):  
Mathieu Bourguignon ◽  
Nicola Molinaro ◽  
Mikel Lizarazu ◽  
Samu Taulu ◽  
Veikko Jousmäki ◽  
...  

AbstractTo gain novel insights into how the human brain processes self-produced auditory information during reading aloud, we investigated the coupling between neuromagnetic activity and the temporal envelope of the heard speech sounds (i.e., speech brain tracking) in a group of adults who 1) read a text aloud, 2) listened to a recording of their own speech (i.e., playback), and 3) listened to another speech recording. Coherence analyses revealed that, during reading aloud, the reader’s brain tracked the slow temporal fluctuations of the speech output. Specifically, auditory cortices tracked phrasal structure (<1 Hz) but to a lesser extent than during the two speech listening conditions. Also, the tracking of syllable structure (4–8 Hz) occurred at parietal opercula during reading aloud and at auditory cortices during listening. Directionality analyses based on renormalized partial directed coherence revealed that speech brain tracking at <1 Hz and 4–8 Hz is dominated by speech-to-brain directional coupling during both reading aloud and listening, meaning that speech brain tracking mainly entails auditory feedback processing. Nevertheless, brain-to-speech directional coupling at 4– 8 Hz was enhanced during reading aloud compared with listening, likely reflecting speech monitoring before production. Altogether, these data bring novel insights into how auditory verbal information is tracked by the human brain during perception and self-generation of connected speech.HighlightsThe brain tracks phrasal and syllabic rhythmicity of self-produced (read) speech.Tracking of phrasal structures is attenuated during reading compared with listening.Speech rhythmicity mainly drives brain activity during reading and listening.Brain activity drives syllabic rhythmicity more during reading than listening.


Sign in / Sign up

Export Citation Format

Share Document