scholarly journals Cognitive Control Mechanisms Revealed by ERP and fMRI: Evidence from Repeated Task-Switching

2003 ◽  
Vol 15 (6) ◽  
pp. 785-799 ◽  
Author(s):  
R. Swainson ◽  
R. Cunnington ◽  
G. M. Jackson ◽  
C. Rorden ◽  
A. M. Peters ◽  
...  

We investigated the extent to which a common neural mechanism is involved in task set-switching and response withholding, factors that are frequently confounded in taskswitching and go/no-go paradigms. Subjects' brain activity was measured using event-related electrical potentials (ERPs) and event-related functional MRI (fMRI) neuroimaging in separate studies using the same cognitive paradigm. Subjects made compatible left/right keypress responses to left/right arrow stimuli of 1000 msec duration; they switched every two trials between responding at stimulus onset (GO task—green arrows) and stimulus offset (WAIT task—red arrows). Withholding an immediate response (WAIT vs. GO) elicited an enhancement of the frontal N2 ERP and lateral PFC activation of the right hemisphere, both previously associated with the “nogo” response, but only on switch trials. Task-switching (switch vs. nonswitch) was associated with frontal N2 amplification and right hemisphere ventrolateral PFC activation, but only for the WAIT task. The anterior cingulate cortex (ACC) was the only brain region to be activated for both types of task switch, but this activation was located more rostrally for the WAIT than for the GO switch trials. We conclude that the frontal N2 ERP and lateral PFC activation are not markers for withholding an immediate response or switching tasks per se, but are associated with switching into a response-suppression mode. Different regions within the ACC may be involved in two processes integral to task-switching: processing response conflict (rostral ACC) and overcoming prior response suppression (caudal ACC).

Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Jian Guo ◽  
Ning Chen ◽  
Muke Zhou ◽  
Pian Wang ◽  
Li He

Background: Transient ischemic attack (TIA) can increase the risk of some neurologic dysfunctions, of which the mechanism remains unclear. Resting-state functional MRI (rfMRI) is suggested to be a valuable tool to study the relation between spontaneous brain activity and behavioral performance. However, little is known about whether the local synchronization of spontaneous neural activity is altered in TIA patients. The purpose of this study is to detect differences in regional spontaneous activities throughout the whole brain between TIAs and normal controls. Methods: Twenty one TIA patients suffered an ischemic event in the right hemisphere and 21 healthy volunteers were enrolled in the study. All subjects were investigated using cognitive tests and rfMRI. The regional homogeneity (ReHo) was calculate and compared between two groups. Then a correlation analysis was performed to explore the relationship between ReHo values of brain regions showing abnormal resting-state properties and clinical variables in TIA group. Results: Compared with controls, TIA patients exhibited decreased ReHo in right dorsolateral prefrontal cortex (DLPFC), right inferior prefrontal gyrus, right ventral anterior cingulate cortex and right dorsal posterior cingular cortex. Moreover, the mean ReHo in right DLPFC and right inferior prefrontal gyrus were significantly correlated with MoCA in TIA patients. Conclusions: Neural activity in the resting state is changed in patients with TIA. The positive correlation between regional homogeneity of rfMRI and cognition suggests that ReHo may be a promising tool to better our understanding of the neurobiological consequences of TIA.


2013 ◽  
Vol 25 (2) ◽  
pp. 219-233 ◽  
Author(s):  
Emilie T. Reas ◽  
James B. Brewer

Neuroimaging studies of episodic memory retrieval have revealed activations in the human frontal, parietal, and medial-temporal lobes that are associated with memory strength. However, it remains unclear whether these brain responses are veritable signals of memory strength or are instead regulated by concomitant subcomponents of retrieval such as retrieval effort or mental search. This study used event-related fMRI during cued recall of previously memorized word-pair associates to dissociate brain responses modulated by memory search from those modulated by the strength of a recalled memory. Search-related deactivations, dissociated from activity due to memory strength, were observed in regions of the default network, whereas distinctly strength-dependent activations were present in superior and inferior parietal and dorsolateral PFC. Both search and strength regulated activity in dorsal anterior cingulate and anterior insula. These findings suggest that, although highly correlated and partially subserved by overlapping cognitive control mechanisms, search and memory strength engage dissociable regions of frontoparietal attention and default networks.


2020 ◽  
Author(s):  
Melanie Segado ◽  
Robert J. Zatorre ◽  
Virginia B. Penhune

AbstractMany everyday tasks share high-level sensory goals but differ in the movements used to accomplish them. One example of this is musical pitch regulation, where the same notes can be produced using the vocal system or a musical instrument controlled by the hands. Cello playing has previously been shown to rely on brain structures within the singing network for performance of single notes, except in areas related to primary motor control, suggesting that the brain networks for auditory feedback processing and sensorimotor integration may be shared (Segado et al. 2018). However, research has shown that singers and cellists alike can continue singing/playing in tune even in the absence of auditory feedback (Chen et al. 2013, Kleber et al. 2013), so different paradigms are required to test feedback monitoring and control mechanisms. In singing, auditory pitch feedback perturbation paradigms have been used to show that singers engage a network of brain regions including anterior cingulate cortex (ACC), anterior insula (aINS), and intraparietal sulcus (IPS) when compensating for incorrect pitch feedback, and posterior superior temporal gyrus (pSTG) and supramarginal gyrus (SMG) when ignoring it (Zarate et al. 2005, 2008). To determine whether the brain networks for cello playing and singing directly overlap in these sensory-motor integration areas, in the present study expert cellists were asked to compensate for or ignore introduced pitch perturbations when singing/playing during fMRI scanning. We found that cellists were able to sing/play target tones, and compensate for and ignore introduced feedback perturbations equally well. Brain activity overlapped for singing and playing in IPS and SMG when compensating, and pSTG and dPMC when ignoring; differences between singing/playing across all three conditions were most prominent in M1, centered on the relevant motor effectors (hand, larynx). These findings support the hypothesis that pitch regulation during cello playing relies on structures within the singing network and suggests that differences arise primarily at the level of forward motor control.HighlightsExpert cellists were asked to compensate for or ignore introduced pitch perturbations when singing/playing during fMRI scanning.Cellists were able to sing/play target tones, and compensate for and ignore introduced feedback perturbations equally well.Brain activity overlapped for singing and playing in IPS and SMG when compensating, and pSTG and dPMC when ignoring.Differences between singing/playing across were most prominent in M1, centered around the relevant motor effectors (hand, larynx)Findings support the hypothesis that pitch regulation during cello playing relies on structures within the singing network with differences arising primarily at the level of forward motor control


2019 ◽  
Author(s):  
Kelly M. Burke ◽  
Sophie Molholm ◽  
John S. Butler ◽  
Lars A. Ross ◽  
John J. Foxe

AbstractHumans perform sub-optimally when juggling more than one task, but are nonetheless required to multitask during many daily activities. Rapidly and effectively switching attentional focus between tasks is fundamental to navigating complex environments. Task-switching paradigms in conjunction with neuroimaging have identified brain networks underpinning flexible reallocation of cognitive resources and a core network of neural regions is repeatedly implicated (i.e., posterior parietal, inferior frontal, anterior cingulate, and middle frontal cortex). Performance costs such as reduced accuracy and slowed responses accompany the first execution of a task following a task-switch. These costs stem from three main sources of competition: 1) the need to reconfigure task-rules, 2) the immediate history of motor responding, and 3) whether inputs to be acted upon provide congruent or incongruent information regarding the appropriate motor response, relative to the recently “switched-away-from” task. Here, we asked whether both common (domain-general) and non-overlapping (dissociable) neural circuits were involved in resolving these three distinct sources of competition under high-demand task-switching conditions. Dissociable neural circuits were active in resolving each of the three sources of competition. No domain-general regions were implicated in all three. Rather, two regions were common across rule-switching and stimulus incongruence, and five regions to incongruence and response-switching. Each source of conflict elicited activation from many regions including the posterior cingulate, thalamus, and cerebellum, regions not commonly implicated in the task-switching literature. These results suggest that dissociable neural networks are principally responsible for resolving different sources of competition, but with partial interaction of some overlapping domain-general circuitry.


2013 ◽  
Vol 221 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Kerstin Jost ◽  
Wouter De Baene ◽  
Iring Koch ◽  
Marcel Brass

The role of cue processing has become a controversial topic in research on cognitive control using task-switching procedures. Some authors suggested a priming account to explain switch costs as a form of encoding benefit when the cue from the previous trial is repeated and hence challenged theories that attribute task-switch costs to task-set (re)configuration. A rich body of empirical evidence has evolved that indeed shows that cue-encoding repetition priming is an important component in task switching. However, these studies also demonstrate that there are usually substantial “true” task-switch costs. Here, we review this behavioral, electrophysiological, and brain imaging evidence. Moreover, we describe alternative approaches to the explicit task-cuing procedure, such as the usage of transition cues or the task-span procedure. In addition, we address issues related to the type of cue, such as cue transparency. We also discuss methodological and theoretical implications and argue that the explicit task-cuing procedure is suitable to address issues of cognitive control and task-set switching.


2019 ◽  
Vol 9 (7) ◽  
pp. 150 ◽  
Author(s):  
Yongzhi Huang ◽  
Binith Cheeran ◽  
Alexander L. Green ◽  
Timothy J. Denison ◽  
Tipu Z. Aziz

Deep brain stimulation (DBS) of the anterior cingulate cortex (ACC) was offered to chronic pain patients who had exhausted medical and surgical options. However, several patients developed recurrent seizures. This work was conducted to assess the effect of ACC stimulation on the brain activity and to guide safe DBS programming. A sensing-enabled neurostimulator (Activa PC + S) allowing wireless recording through the stimulating electrodes was chronically implanted in three patients. Stimulation patterns with different amplitude levels and variable ramping rates were tested to investigate whether these patterns could provide pain relief without triggering after-discharges (ADs) within local field potentials (LFPs) recorded in the ACC. In the absence of ramping, AD activity was detected following stimulation at amplitude levels below those used in chronic therapy. Adjustment of stimulus cycling patterns, by slowly ramping on/off (8-s ramp duration), was able to prevent ADs at higher amplitude levels while maintaining effective pain relief. The absence of AD activity confirmed from the implant was correlated with the absence of clinical seizures. We propose that AD activity in the ACC could be a biomarker for the likelihood of seizures in these patients, and the application of sensing-enabled techniques has the potential to advance safer brain stimulation therapies, especially in novel targets.


SLEEP ◽  
2021 ◽  
Author(s):  
Ernesto Sanz-Arigita ◽  
Yannick Daviaux ◽  
Marc Joliot ◽  
Bixente Dilharreguy ◽  
Jean-Arthur Micoulaud-Franchi ◽  
...  

Abstract Study objectives Emotional reactivity to negative stimuli has been investigated in insomnia, but little is known about emotional reactivity to positive stimuli and its neural representation. Methods We used 3T fMRI to determine neural reactivity during the presentation of standardized short, 10-40-s, humorous films in insomnia patients (n=20, 18 females, aged 27.7 +/- 8.6 years) and age-matched individuals without insomnia (n=20, 19 females, aged 26.7 +/- 7.0 years), and assessed humour ratings through a visual analogue scale (VAS). Seed-based functional connectivity was analysed for left and right amygdala networks: group-level mixed-effects analysis (FLAME; FSL) was used to compare amygdala connectivity maps between groups. Results fMRI seed-based analysis of the amygdala revealed stronger neural reactivity in insomnia patients than in controls in several brain network clusters within the reward brain network, without humour rating differences between groups (p = 0.6). For left amygdala connectivity, cluster maxima were in the left caudate (Z=3.88), left putamen (Z=3.79) and left anterior cingulate gyrus (Z=4.11), while for right amygdala connectivity, cluster maxima were in the left caudate (Z=4.05), right insula (Z=3.83) and left anterior cingulate gyrus (Z=4.29). Cluster maxima of the right amygdala network were correlated with hyperarousal scores in insomnia patients only. Conclusions Presentation of humorous films leads to increased brain activity in the neural reward network for insomnia patients compared to controls, related to hyperarousal features in insomnia patients, in the absence of humor rating group differences. These novel findings may benefit insomnia treatment interventions.


2021 ◽  
Vol 11 (8) ◽  
pp. 998
Author(s):  
Siobhán R. Shaw ◽  
Hashim El-Omar ◽  
Siddharth Ramanan ◽  
Olivier Piguet ◽  
Rebekah M. Ahmed ◽  
...  

Semantic dementia (SD) is a younger-onset neurodegenerative disease characterised by progressive deterioration of the semantic knowledge base in the context of predominantly left-lateralised anterior temporal lobe (ATL) atrophy. Mounting evidence indicates the emergence of florid socioemotional changes in SD as atrophy encroaches into right temporal regions. How lateralisation of temporal lobe pathology impacts the hedonic experience in SD remains largely unknown yet has important implications for understanding socioemotional and functional impairments in this syndrome. Here, we explored how lateralisation of temporal lobe atrophy impacts anhedonia severity on the Snaith–Hamilton Pleasure Scale in 28 SD patients presenting with variable right- (SD-R) and left-predominant (SD-L) profiles of temporal lobe atrophy compared to that of 30 participants with Alzheimer’s disease and 30 healthy older Control participants. Relative to Controls, SD-R but not SD-L or Alzheimer’s patients showed clinically significant anhedonia, representing a clear departure from premorbid levels. Overall, anhedonia was more strongly associated with functional impairment on the Frontotemporal Dementia Functional Rating Scale and motivational changes on the Cambridge Behavioural Inventory in SD than in Alzheimer’s disease patients. Voxel-based morphometry analyses revealed that anhedonia severity correlated with reduced grey matter intensity in a restricted set of regions centred on right orbitofrontal and temporopolar cortices, bilateral posterior temporal cortices, as well as the anterior cingulate gyrus and parahippocampal gyrus, bilaterally. Finally, regression and mediation analysis indicated a unique role for right temporal lobe structures in modulating anhedonia in SD. Our findings suggest that degeneration of predominantly right-hemisphere structures deleteriously impacts the capacity to experience pleasure in SD. These findings offer important insights into hemispheric lateralisation of motivational disturbances in dementia and suggest that anhedonia may emerge at different timescales in the SD disease trajectory depending on the integrity of the right hemisphere.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshio Tsuji ◽  
Fumiya Arikuni ◽  
Takafumi Sasaoka ◽  
Shin Suyama ◽  
Takashi Akiyoshi ◽  
...  

AbstractBrain activity associated with pain perception has been revealed by numerous PET and fMRI studies over the past few decades. These findings helped to establish the concept of the pain matrix, which is the distributed brain networks that demonstrate pain-specific cortical activities. We previously found that peripheral arterial stiffness $${\beta }_{\text{art}}$$ β art responds to pain intensity, which is estimated from electrocardiography, continuous sphygmomanometer, and photo-plethysmography. However, it remains unclear whether and to what extent $${\beta }_{\text{art}}$$ β art aligns with pain matrix brain activity. In this fMRI study, 22 participants received different intensities of pain stimuli. We identified brain regions in which the blood oxygen level-dependent signal covaried with $${\beta }_{\text{art}}$$ β art using parametric modulation analysis. Among the identified brain regions, the lateral and medial prefrontal cortex and ventral and dorsal anterior cingulate cortex were consistent with the pain matrix. We found moderate correlations between the average activities in these regions and $${\beta }_{\text{art}}$$ β art (r = 0.47, p < 0.001). $${\beta }_{\text{art}}$$ β art was also significantly correlated with self-reported pain intensity (r = 0.44, p < 0.001) and applied pain intensity (r = 0.43, p < 0.001). Our results indicate that $${\beta }_{\text{art}}$$ β art is positively correlated with pain-related brain activity and subjective pain intensity. This study may thus represent a basis for adopting peripheral arterial stiffness as an objective pain evaluation metric.


Sign in / Sign up

Export Citation Format

Share Document