scholarly journals Top–Down Inhibitory Mechanisms Underlying Auditory–Motor Integration for Voice Control: Evidence by TMS

2020 ◽  
Vol 30 (8) ◽  
pp. 4515-4527 ◽  
Author(s):  
Dongxu Liu ◽  
Guangyan Dai ◽  
Churong Liu ◽  
Zhiqiang Guo ◽  
Zhiqin Xu ◽  
...  

Abstract The dorsolateral prefrontal cortex (DLPFC) has been implicated in auditory–motor integration for accurate control of vocal production, but its precise role in this feedback-based process remains largely unknown. To this end, the present event-related potential study applied a transcranial magnetic stimulation (TMS) protocol, continuous theta-burst stimulation (c-TBS), to disrupt cortical activity in the left DLPFC as young adults vocalized vowel sounds while hearing their voice unexpectedly shifted upwards in pitch. The results showed that, as compared to the sham condition, c-TBS over left DLPFC led to significantly larger vocal compensations for pitch perturbations that were accompanied by significantly smaller cortical P2 responses. Source localization analyses revealed that this brain activity pattern was the result of reduced activation in the left superior frontal gyrus and right inferior parietal lobule (supramarginal gyrus). These findings demonstrate c-TBS-induced modulatory effects of DLPFC on the neurobehavioral processing of vocal pitch regulation, suggesting that disrupting prefrontal function may impair top–down inhibitory control mechanisms that prevent speech production from being excessively influenced by auditory feedback, resulting in enhanced vocal compensations for feedback perturbations. This is the first study that provides direct evidence for a causal role of the left DLPFC in auditory feedback control of vocal production.

2020 ◽  
Author(s):  
Melanie Segado ◽  
Robert J. Zatorre ◽  
Virginia B. Penhune

AbstractMany everyday tasks share high-level sensory goals but differ in the movements used to accomplish them. One example of this is musical pitch regulation, where the same notes can be produced using the vocal system or a musical instrument controlled by the hands. Cello playing has previously been shown to rely on brain structures within the singing network for performance of single notes, except in areas related to primary motor control, suggesting that the brain networks for auditory feedback processing and sensorimotor integration may be shared (Segado et al. 2018). However, research has shown that singers and cellists alike can continue singing/playing in tune even in the absence of auditory feedback (Chen et al. 2013, Kleber et al. 2013), so different paradigms are required to test feedback monitoring and control mechanisms. In singing, auditory pitch feedback perturbation paradigms have been used to show that singers engage a network of brain regions including anterior cingulate cortex (ACC), anterior insula (aINS), and intraparietal sulcus (IPS) when compensating for incorrect pitch feedback, and posterior superior temporal gyrus (pSTG) and supramarginal gyrus (SMG) when ignoring it (Zarate et al. 2005, 2008). To determine whether the brain networks for cello playing and singing directly overlap in these sensory-motor integration areas, in the present study expert cellists were asked to compensate for or ignore introduced pitch perturbations when singing/playing during fMRI scanning. We found that cellists were able to sing/play target tones, and compensate for and ignore introduced feedback perturbations equally well. Brain activity overlapped for singing and playing in IPS and SMG when compensating, and pSTG and dPMC when ignoring; differences between singing/playing across all three conditions were most prominent in M1, centered on the relevant motor effectors (hand, larynx). These findings support the hypothesis that pitch regulation during cello playing relies on structures within the singing network and suggests that differences arise primarily at the level of forward motor control.HighlightsExpert cellists were asked to compensate for or ignore introduced pitch perturbations when singing/playing during fMRI scanning.Cellists were able to sing/play target tones, and compensate for and ignore introduced feedback perturbations equally well.Brain activity overlapped for singing and playing in IPS and SMG when compensating, and pSTG and dPMC when ignoring.Differences between singing/playing across were most prominent in M1, centered around the relevant motor effectors (hand, larynx)Findings support the hypothesis that pitch regulation during cello playing relies on structures within the singing network with differences arising primarily at the level of forward motor control


2021 ◽  
Author(s):  
Toshiharu Kamishikiryo ◽  
Go Okada ◽  
Eri Itai ◽  
Yoshikazu Masuda ◽  
Satoshi Yokoyama ◽  
...  

Abstract To establish treatment response biomarkers that reflect the pathophysiology of depression, it is important to use an integrated set of features that are promising as biomarkers. This study aimed to determine the relationship between blood metabolites related to treatment response to escitalopram and regional brain activity at rest and to find the characteristics of depression that respond to treatment. Blood metabolite levels and resting brain activity were measured in patients with depression (N = 65) before and after 6 weeks treatment with escitalopram and healthy controls (N = 36). Thirty-two patients (49.2%) showed clinical response (>50% reduction in Hamilton Rating Scale for Depression score) and were classified as Responders, and the remaining 33 patients were classified as Nonresponders. Pretreatment plasma kynurenine level and fractional amplitude of low-frequency fluctuations (fALFF) of the left dorsolateral prefrontal cortex (DLPFC) were lower in Responders, and their elevations after treatment were correlated with improvement in symptoms. Moreover, fALFF of the left DLPFC was significantly correlated with plasma kynurenine level in pretreatment patients with depression and healthy controls. Decreased kynurenine level and resting-state regional brain activity of the left DLPFC may be involved in the pathophysiology of depression in response to escitalopram treatment.


Neuroreport ◽  
2020 ◽  
Vol 31 (4) ◽  
pp. 325-331
Author(s):  
Xiuqin Wu ◽  
Baofeng Zhang ◽  
Lirao Wei ◽  
Hanjun Liu ◽  
Peng Liu ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Atsumichi Tachibana ◽  
J. Adam Noah ◽  
Yumie Ono ◽  
Daisuke Taguchi ◽  
Shuichi Ueda

Abstract Understanding how the brain modulates improvisation has been the focus of numerous studies in recent years. Models have suggested regulation of activity between default mode and executive control networks play a role in improvisational execution. Several studies comparing formulaic to improvised sequences support this framework and document increases in activity in medial frontal lobe with decreased activity in the dorsolateral prefrontal cortex (DLPFC). These patterns can be influenced through training and neural responses may differ between in beginner and expert musicians. Our goal was to test the generalizability of this framework and determine similarity in neural activity in the prefrontal cortex during improvisation. Twenty guitarists performed improvised and formulaic sequences in a blues rock format while brain activity was recorded using functional near-infrared spectroscopy. Results indicate similar modulation in DLPFC as seen previously. Specific decreases of activity from left DLPFC in the end compared to beginning or middle of improvised sequences were also found. Despite the range of skills of participants, we also found significant correlation between subjective feelings of improvisational performance and modulation in left DLPFC. Processing of subjective feelings regardless of skill may contribute to neural modulation and may be a factor in understanding neural activity during improvisation.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Michael J. Wesley ◽  
Terry Lohrenz ◽  
Mikhail N. Koffarnus ◽  
Samuel M. McClure ◽  
Richard De La Garza ◽  
...  

Addiction is considered a disorder that drives individuals to choose drugs at the expense of healthier alternatives. However, chronic cocaine users (CCUs) who meet addiction criteria retain the ability to choose money in the presence of the opportunity to choose cocaine. The neural mechanisms that differentiate CCUs from non-cocaine using controls (Controls) while executing these preferred choices remain unknown. Thus, therapeutic strategies aimed at shifting preferences towards healthier alternatives remain somewhat uninformed. This study used BOLD neuroimaging to examine brain activity as fifty CCUs and Controls performed single- and cross-commodity intertemporal choice tasks for money and/or cocaine. Behavioral analyses revealed preferences for each commodity type. Imaging analyses revealed the brain activity that differentiated CCUs from Controls while choosing money over cocaine. We observed that CCUs devalued future commodities more than Controls. Choices for money as opposed to cocaine correlated with greater activity in dorsal striatum of CCUs, compared to Controls. In addition, choices for future money as opposed to immediate cocaine engaged the left dorsolateral prefrontal cortex (DLPFC) of CCUs more than Controls. These data suggest that the ability of CCUs to execute choices away from cocaine relies on activity in the dorsal striatum and left DLPFC.


2020 ◽  
Vol 63 (2) ◽  
pp. 421-432 ◽  
Author(s):  
Ayoub Daliri ◽  
Elizabeth S. Heller Murray ◽  
Anne J. Blood ◽  
James Burns ◽  
J. Pieter Noordzij ◽  
...  

Purpose Adductor spasmodic dysphonia (ADSD), the most common form of spasmodic dysphonia, is a debilitating voice disorder characterized by hyperactivity and muscle spasms in the vocal folds during speech. Prior neuroimaging studies have noted excessive brain activity during speech in participants with ADSD compared to controls. Speech involves an auditory feedback control mechanism that generates motor commands aimed at eliminating disparities between desired and actual auditory signals. Thus, excessive neural activity in ADSD during speech may reflect, at least in part, increased engagement of the auditory feedback control mechanism as it attempts to correct vocal production errors detected through audition. Method To test this possibility, functional magnetic resonance imaging was used to identify differences between participants with ADSD ( n = 12) and age-matched controls ( n = 12) in (a) brain activity when producing speech under different auditory feedback conditions and (b) resting-state functional connectivity within the cortical network responsible for vocalization. Results As seen in prior studies, the ADSD group had significantly higher activity than the control group during speech with normal auditory feedback (compared to a silent baseline task) in three left-hemisphere cortical regions: ventral Rolandic (sensorimotor) cortex, anterior planum temporale, and posterior superior temporal gyrus/planum temporale. Importantly, this same pattern of hyperactivity was also found when auditory feedback control of speech was eliminated through masking noise. Furthermore, the ADSD group had significantly higher resting-state functional connectivity between sensorimotor and auditory cortical regions within the left hemisphere as well as between the left and right hemispheres. Conclusions Together, our results indicate that hyperactivation in the cortical speech network of individuals with ADSD does not result from hyperactive auditory feedback control mechanisms and rather is likely related to impairments in somatosensory feedback control and/or feedforward control mechanisms.


2019 ◽  
Vol 30 (1) ◽  
pp. 85-99 ◽  
Author(s):  
Farshad A Mansouri ◽  
Mark J Buckley ◽  
Daniel J Fehring ◽  
Keiji Tanaka

Abstract Imaging and neural activity recording studies have shown activation in the primate prefrontal cortex when shifting attention between visual dimensions is necessary to achieve goals. A fundamental unanswered question is whether representations of these dimensions emerge from top-down attentional processes mediated by prefrontal regions or from bottom-up processes within visual cortical regions. We hypothesized a causative link between prefrontal cortical regions and dimension-based behavior. In large cohorts of humans and macaque monkeys, performing the same attention shifting task, we found that both species successfully shifted between visual dimensions, but both species also showed a significant behavioral advantage/bias to a particular dimension; however, these biases were in opposite directions in humans (bias to color) versus monkeys (bias to shape). Monkeys’ bias remained after selective bilateral lesions within the anterior cingulate cortex (ACC), frontopolar cortex, dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), or superior, lateral prefrontal cortex. However, lesions within certain regions (ACC, DLPFC, or OFC) impaired monkeys’ ability to shift between these dimensions. We conclude that goal-directed processing of a particular dimension for the executive control of behavior depends on the integrity of prefrontal cortex; however, representation of competing dimensions and bias toward them does not depend on top-down prefrontal-mediated processes.


2020 ◽  
Vol 31 (8) ◽  
pp. 905-914 ◽  
Author(s):  
Yali Feng ◽  
Jiaqi Zhang ◽  
Yi Zhou ◽  
Zhongfei Bai ◽  
Ying Yin

AbstractNoninvasive brain stimulation (NIBS) techniques have been used to facilitate the recovery from prolonged unconsciousness as a result of brain injury. The aim of this study is to systematically assess the effects of NIBS in patients with a disorder of consciousness (DOC). We searched four databases for any randomized controlled trials on the effect of NIBS in patients with a DOC, which used the JFK Coma Recovery Scale-Revised (CRS-R) as the primary outcome measure. A random-effects meta-analysis was conducted to pool effect sizes. Fourteen studies with 273 participants were included in this review, of which 12 studies with sufficient data were included in the meta-analysis. Our meta-analysis showed a significant effect on increasing CRS-R scores in favor of real stimulation as compared to sham (Hedges’ g = 0.522; 95% confidence interval [CI], 0.318–0.726; P < 0.0001, I2 = 0.00%). Subgroup analysis demonstrated that only anodal transcranial direct current stimulation (tDCS) of the left dorsolateral prefrontal cortex (DLPFC) significantly enhances the CRS-R scores in patients with a DOC, as compared to sham (Hedges’ g = 0.703; 95% CI, 0.419–0.986; P < 0.001), and this effect was predominant in patients in a minimally conscious state (MCS) (Hedges’ g = 0.815; 95% CI, 0.429–1.200; P < 0.001). Anodal tDCS of the left DLPFC appears to be an effective approach for patients with MCS.


Author(s):  
Benjamin A. Parris ◽  
Michael G. Wadsley ◽  
Gizem Arabaci ◽  
Nabil Hasshim ◽  
Maria Augustinova ◽  
...  

AbstractPrevious work investigating the effect of rTMS of left Dorso-Lateral Prefrontal Cortex (DLPFC) on Stroop task performance reports no changes to the Stroop effect but reduced reaction times on both congruent and incongruent trials relative to sham stimulation; an effect attributed to an enhanced attentional (or task) set for colour classification. The present study tested this account by investigating whether, relative to vertex stimulation, rTMS of the left DLPFC modifies task conflict, a form of conflict that arises when task sets for colour classification and word reading compete, given that this particular type of conflict would be reduced by an enhanced task set for colour classification. Furthermore, the present study included measures of other forms of conflict present in the Stroop task (response and semantic conflict), the potential effects on which would have been hidden in previous studies employing only incongruent and congruent stimuli. Our data showed that left DLPFC stimulation had no effect on the magnitude of task conflict, nor did it affect response, semantic or overall conflict (where the null is supported by sensitive Bayes Factors in most cases). However, consistent with previous research left DLPFC stimulation had the general effect of reducing reaction times. We, therefore, show for the first time that relative to real vertex stimulation left DLPFC stimulation does not modify Stroop interference. Alternative accounts of the role of the left DLPFC in Stroop task performance in which it either modifies response thresholds or facilitates responding by keeping the correct response keys active in working memory are discussed.


Sign in / Sign up

Export Citation Format

Share Document