scholarly journals Experimental SARS-CoV-2 infection of bank voles - general susceptibility but lack of direct transmission

2020 ◽  
Author(s):  
Lorenz Ulrich ◽  
Anna Michelitsch ◽  
Nico Halwe ◽  
Kerstin Wernike ◽  
Donata Hoffmann ◽  
...  

AbstractAfter experimental inoculation, SARS-CoV-2 infection was proven for bank voles by seroconversion within eight days and detection of viral RNA in nasal tissue for up to 21 days. However, transmission to contact animals was not detected. Therefore, bank voles are unlikely to establish effective SARS-CoV-2 transmission cycles in nature.Article Summary LineBank voles show low-level viral replication and seroconversion upon infection with SARS-CoV-2, but lack transmission to contact animals.

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Eiichiro Kawai ◽  
Seiichi Omura ◽  
Fumitaka Sato ◽  
Nicholas E Martinez ◽  
Viromi Fernando ◽  
...  

Viral myocarditis has been proposed to be initiated by viral replication in the heart (acute phase), followed by immune-mediated damage (subacute phase), where each phase requires anti-viral and immunomodulatory treatments, respectively. There are no specific biomarkers to distinguish acute from subacute phases of myocarditis while serum troponin, echocardiography, and myocardial biopsy data have been used for diagnosis clinically. To determine the phase-specific biomarkers, we used a mouse model for myocarditis induced by Theiler’s murine encephalomyelitis virus (TMEV), which belongs to the genus Cardiovirus, the family Picornaviridae. We conducted multivariate analyses of viral genome, serum cardiac troponin I, echocardiography, histology, and transcriptome using microarray data of the heart tissue harvested on 4 (acute) and 7 (subacute) days post infection (dpi). The level of viral RNA semi-quantified by RT-PCR was 10-fold higher on 4 dpi (ΔCt = 2.5×10-2 ± 4.9×10-3) than 7 dpi (ΔCt = 2.6×10-3 ± 3.0×10-4) (P < 0.05). Serum troponin was undetectable in 4 of 10 mice on 4 dpi and only in 1 of 10 mice on 7 dpi; the serum troponin levels (ng/ml) on 4 dpi (42.9 ± 15.6) were significantly lower than 7 dpi (249.9 ± 62.8) (P < 0.05). The levels of viral RNA and troponin were strongly correlated on 4 dpi (r = 0.79, P < 0.05), but not 7 dpi (P = 0.12), suggesting that viral replication could be a major cause of myocardial damage only on 4 dpi. We found multiple high intensity cardiac lesions using echocardiography with histological myocarditis on 7 dpi, but not 4 dpi. Transcriptome analyses of microarray data showed upregulation of genes associated with innate immune responses in samples from 4 and 7 dpi, compared with controls. Samples from 7 dpi showed upregulation of genes associated with T, B, and antigen presenting cells and downregulation of cardiac myosin-related genes (Myl4, Myl7, and Mybphl), compared with 4 dpi, suggesting that acquired immune responses contribute to cardiomyocyte damage on 7 dpi. In summary, the chronological order of emergence of biomarker candidates was 1) viral genome and innate immunity, 2) troponin, and 3) acquired immunity and echo and histological changes.


2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Inga Kruse ◽  
Hadrien Peyret ◽  
Pooja Saxena ◽  
George P. Lomonossoff

ABSTRACTTo elucidate the linkage between replication and encapsidation inPicornavirales, we have taken advantage of the bipartite nature of a plant-infecting member of this order, cowpea mosaic virus (CPMV), to decouple the two processes. RNA-free virus-like particles (empty virus-like particles [eVLPs]) can be generated by transiently coexpressing the RNA-2-encoded coat protein precursor (VP60) with the RNA-1-encoded 24,000-molecular-weight (24K) protease, in the absence of the replication machinery (K. Saunders, F. Sainsbury, and G. P. Lomonossoff, Virology 393:329–337, 2009, https://doi.org/10.1016/j.virol.2009.08.023). We have made use of the ability to produce assembled capsids of CPMV in the absence of replication to examine the putative linkage between RNA replication and packaging in thePicornavirales. We have created a series of mutant RNA-1 and RNA-2 molecules and have assessed the effects of the mutations on both the replication and packaging of the viral RNAs. We demonstrate that mutations that affect replication have a concomitant impact on encapsidation and that RNA-1-mediated replication is required for encapsidation of both RNA-1 and RNA-2. This close coupling between replication and encapsidation provides a means for the specific packaging of viral RNAs. Moreover, we demonstrate that this feature of CPMV can be used to specifically encapsidate custom RNA by placing a sequence of choice between the RNA-2 sequences required for replication.IMPORTANCEThe mechanism whereby members of the orderPicornaviralesspecifically package their genomic RNAs is poorly understood. Research with monopartite members of the order, such as poliovirus, indicated that packaging is linked to replication, although the presence of “packaging signals” along the length of the viral RNA has also been suggested. Thanks to the bipartite nature of the CPMV genome, which allows the manipulation of RNA-1 without modifying RNA-2, we show here that this specificity is due to a functional link between the two processes of viral replication and encapsidation. This has important implications for our understanding of the fundamental molecular biology ofPicornaviralesand opens the door to novel research and therapeutic applications in the field of custom RNA packaging and delivery technologies.


PLoS ONE ◽  
2011 ◽  
Vol 6 (8) ◽  
pp. e23622 ◽  
Author(s):  
Paula Maria Kinnunen ◽  
Hanna Inkeroinen ◽  
Mette Ilander ◽  
Eva Riikka Kallio ◽  
Henna Pauliina Heikkilä ◽  
...  

2018 ◽  
Author(s):  
Josep Sardanyés ◽  
Andreu Arderiu ◽  
Santiago F. Elena ◽  
Tomás Alarcón

Evolutionary and dynamical investigations on real viral populations indicate that RNA replication can range between two extremes given by so-called stamping machine replication (SMR) and geometric replication (GR). The impact of asymmetries in replication for single-stranded, (+) sense RNA viruses has been up to now studied with deterministic models. However, viral replication should be better described by including stochasticity, since the cell infection process is typically initiated with a very small number of RNA macromolecules, and thus largely influenced by intrinsic noise. Under appropriate conditions, deterministic theoretical descriptions of viral RNA replication predict a quasineutral coexistence scenario, with a line of fixed points involving different strands’ equilibrium ratios depending on the initial conditions. Recent research on the quasineutral coexistence in two competing populations reveals that stochastic fluctuations fundamentally alters the mean-field scenario, and one of the two species outcompetes the other one. In this manuscript we study this phenomenon for RNA viral replication modes by means of stochastic simulations and a diffusion approximation. Our results reveal that noise has a strong impact on the amplification of viral RNA, also causing the emergence of noise-induced bistability. We provide analytical criteria for the dominance of (+) sense strands depending on the initial populations on the line of equilibria, which are in agreement with direct stochastic simulation results. The biological implications of this noise-driven mechanism are discussed within the framework of the evolutionary dynamics of RNA viruses with different modes of replication.


2021 ◽  
Author(s):  
Shanshan Fan ◽  
Zihang Xu ◽  
Pengfei Liu ◽  
Yali Qin ◽  
Mingzhou Chen

Several viruses were proved to inhibit the formation of RNA processing bodies (P-bodies); however, knowledge regarding whether enterovirus blocks P-body formation remains unclear, and the detailed molecular mechanisms and functions of picornavirus regulation of P-bodies are limited. Here we show the crucial role of 2A protease in inhibiting P-bodies to promote viral replication during enterovirus 71 infection. Moreover, we found that the activity of 2A protease is essential to inhibit P-body formation, which was proved by the result that infection of EV71-2A C110S , the 2A protease activity-inactivated recombinant virus, failed to block the formation of P-bodies. Furthermore, we showed DDX6, a scaffolding protein of P-bodies, interacted with viral RNA to facilitate viral replication rather than viral translation, by using a Renilla luciferase mRNA reporter system and capturing the nascent RNA assay. Altogether, our data firstly demonstrate that the 2A protease of enterovirus inhibits P-body formation to facilitate viral RNA synthesis by recruiting the P-body components to viral RNA. IMPORTANCE Processing bodies (P-bodies) are constitutively present in eukaryotic cells and play an important role in the mRNA cycle, including regulating gene expression and mRNA degradation. P-bodies are the structure that viruses to manipulate to facilitate their survival. Here, we show that the 2A protease alone was efficient to block P-body formation during enterovirus 71 infection and its activity was essential. When the assembly of P-bodies was blocked by 2A, DDX6 and 4E-T which were required for P-body formation bound to viral RNA to facilitate viral RNA synthesis. We propose a model revealing that EV71 manipulates P-body formation to generate an environment that is conducive to viral replication by facilitating viral RNA synthesis: 2A protease blocked P-body assembly to make it possible for virus to take advantage of P-body components.


2019 ◽  
Vol 30 (3) ◽  
pp. 931-943 ◽  
Author(s):  
Julita Kesy ◽  
Kiran M. Patil ◽  
Subaschandrabose Rajesh Kumar ◽  
Zhiyu Shu ◽  
Hui Yee Yong ◽  
...  

2003 ◽  
Vol 77 (10) ◽  
pp. 5649-5656 ◽  
Author(s):  
Kensuke Hirasawa ◽  
Angus Kim ◽  
Hye-Seung Han ◽  
Jaeseok Han ◽  
Hee-Sook Jun ◽  
...  

ABSTRACT Cellular phosphorylation events during viral infection are necessary for effective viral replication. Encephalomyocarditis (EMC) virus has been used for studies on the molecular mechanisms of viral replication, but little is known about the cellular signaling pathways involved. This investigation was initiated to determine whether mitogen-activated protein kinases (MAPKs), which are central components of signal transduction pathways in the regulation of cell proliferation, play a role in the replication of EMC virus. We examined the phosphorylation of MAPKs, including extracellular signal-regulated kinase (ERK1/2), p38 MAPK, and stress-activated protein kinase 1/c-Jun NH2-terminal kinase (SAPK/JNK) in EMC virus-infected L929 cells and found that p38 MAPK and SAPK-JNK, but not ERK1/2, were activated during viral infection. We then examined the effect of these kinases on the replication of EMC virus in L929 cells by using specific inhibitors, including genistein or herbimycin A for tyrosine kinase, SB203580 or SB202190 for p38 MAPK, and PD98059 for ERK1/2. We found that the tyrosine kinase and p38 MAPK inhibitors, but not the ERK1/2 inhibitor, suppressed viral replication and that the inhibitory effect was primarily on viral protein synthesis. Finally, we examined whether p38 MAPK is involved in the translation of EMC viral transcripts by using L929 cells transfected with a gene construct containing the internal ribosomal entry site (IRES) of EMC virus and a luciferase reporter gene. We found that the p38 MAPK inhibitor suppressed the translation of EMC viral RNA. On the basis of these observations, we conclude that p38 MAPK plays a critical role in the replication of EMC virus, probably in the translation of viral RNA.


2017 ◽  
Vol 91 (20) ◽  
Author(s):  
Shu-Chuan Chen ◽  
King-Song Jeng ◽  
Michael M. C. Lai

ABSTRACT Influenza A virus (IAV) replication relies on an intricate interaction between virus and host cells. How the cellular proteins are usurped for IAV replication remains largely obscure. The aim of this study was to search for novel and potential cellular factors that participate in IAV replication. ZBTB25, a transcription repressor of a variety of cellular genes, was identified by an RNA interference (RNAi) genomic library screen. Depletion of ZBTB25 significantly reduced IAV production. Conversely, overexpression of ZBTB25 enhanced it. ZBTB25 interacted with the viral RNA-dependent RNA polymerase (RdRp) protein and modulated its transcription activity. In addition, ZBTB25 also functioned as a viral RNA (vRNA)-binding protein, binding preferentially to the U-rich sequence within the 5′ untranslated region (UTR) of vRNA. Both protein-protein and protein-RNA interactions involving ZBTB25 facilitated viral RNA transcription and replication. In addition, ZBTB25 suppressed interferon production, further enhancing viral replication. ZBTB25-associated functions required an intact zinc finger domain and posttranslational SUMO-1 modification of ZBTB25. Furthermore, treatment with disulfiram (a zinc ejector) of ZBTB25-overexpressing cells showed significantly reduced IAV production as a result of reduced RNA synthesis. Our findings indicate that IAV usurps ZBTB25 for IAV RNA synthesis and serves as a novel and potential therapeutic antiviral target. IMPORTANCE IAV-induced seasonal influenza causes severe illness and death in high-risk populations. However, IAV has developed resistance to current antiviral drugs due to its high mutation rate. Therefore, development of drugs targeting cellular factors required for IAV replication is an attractive alternative for IAV therapy. Here, we discovered a cellular protein, ZBTB25, that enhances viral RdRp activity by binding to both viral RdRp and viral RNA to stimulate viral RNA synthesis. A unique feature of ZBTB25 in the regulation of viral replication is its dual transcription functions, namely, promoting viral RNA transcription through binding to the U-rich region of vRNA and suppressing cellular interferon production. ZBTB25 contains a zinc finger domain that is required for RNA-inhibitory activity by chelating zinc ions. Disulfiram treatment disrupts the zinc finger functions, effectively repressing IAV replication. Based on our findings, we demonstrate that ZBTB25 regulates IAV RNA transcription and replication and serves as a promising antiviral target for IAV treatment.


2004 ◽  
Vol 78 (22) ◽  
pp. 12480-12488 ◽  
Author(s):  
Mark Trottier ◽  
Brian P. Schlitt ◽  
Aisha Y. Kung ◽  
Howard L. Lipton

ABSTRACT The dynamics of Theiler's murine encephalomyelitis virus (TMEV) RNA replication in the central nervous systems of susceptible and resistant strains of mice were examined by quantitative real-time reverse transcription-PCR and were found to correlate with host immune responses. During the acute phase of infection in both susceptible and resistant mice, levels of viral replication were high in the brain and brain stem, while levels of viral genome equivalents were 10- to 100-fold lower in the spinal cord. In the brain, viral RNA replication decreased after a peak at 5 days postinfection (p.i.), in parallel with the appearance of virus-specific antibody responses; however, by 15 days p.i., viral RNA levels began to increase in the spinal cords of susceptible mice. During the transition to and the persistent phase of infection, the numbers of viral genome equivalents in the spinal cord varied substantially for individual mice, but high levels were consistently associated with high levels of proinflammatory Th1 cytokine and chemokine mRNAs. Moreover, a large number of viral genome equivalents and high proinflammatory cytokine mRNA levels in spinal cords were only observed for susceptible SJL/J mice who developed demyelinating disease. These results suggest that TMEV persistence requires active viral replication beginning about day 11 p.i. and that active viral replication with high viral genome loads leads to increased levels of Th1 cytokines that drive disease progression in infected mice.


2005 ◽  
Vol 79 (9) ◽  
pp. 5363-5373 ◽  
Author(s):  
Julie R. Harris ◽  
Vincent R. Racaniello

ABSTRACT Many steps of viral replication are dependent on the interaction of viral proteins with host cell components. To identify rhinovirus proteins involved in such interactions, human rhinovirus 39 (HRV39), a virus unable to replicate in mouse cells, was adapted to efficient growth in mouse cells producing the viral receptor ICAM-1 (ICAM-L cells). Amino acid changes were identified in the 2B and 3A proteins of the adapted virus, RV39/L. Changes in 2B were sufficient to permit viral growth in mouse cells; however, changes in both 2B and 3A were required for maximal viral RNA synthesis in mouse cells. Examination of infected HeLa cells by electron microscopy demonstrated that human rhinoviruses induced the formation of cytoplasmic membranous vesicles, similar to those observed in cells infected with other picornaviruses. Vesicles were also observed in the cytoplasm of HRV39-infected mouse cells despite the absence of viral RNA replication. Synthesis of picornaviral nonstructural proteins 2C, 2BC, and 3A is known to be required for formation of membranous vesicles. We suggest that productive HRV39 infection is blocked in ICAM-L cells at a step posttranslation and prior to the formation of a functional replication complex. The observation that changes in HRV39 2B and 3A proteins lead to viral growth in mouse cells suggests that one or both of these proteins interact with host cell proteins to promote viral replication.


Sign in / Sign up

Export Citation Format

Share Document