scholarly journals Sex reversal and ontogeny under climate change and chemical pollution: are there interactions between the effects of elevated temperature and a xenoestrogen on early development in agile frogs?

2020 ◽  
Author(s):  
Zsanett Mikó ◽  
Edina Nemesházi ◽  
Nikolett Ujhegyi ◽  
Viktória Verebélyi ◽  
János Ujszegi ◽  
...  

Anthropogenic environmental change poses a special threat to species in which genetic sex determination can be overwritten by the thermal and chemical environment. Endocrine disrupting chemicals as well as extreme temperatures can induce sex reversal in such species, with wide-ranging consequences for fitness, demography, population viability and evolution. Despite accumulating evidence suggesting that chemical and thermal effects may interact in ecological contexts, little is known about their combined effects on sex reversal. Here we assessed the simultaneous effects of high temperature (masculinizing agent) and 17α-ethinylestradiol (EE2), a widespread xenoestrogen (feminizing agent), on sexual development and fitness-related traits in agile frogs (Rana dalmatina). We exposed tadpoles to a six-days heat wave (30°C) and/or an ecologically relevant concentration of EE2 (30 ng/L) in one of three consecutive larval periods, and diagnosed sex reversals two months after metamorphosis using species-specific markers for genetic sexing. We found that high temperature induced female-to-male sex reversal, decreased survival, delayed metamorphosis, decreased body mass at metamorphosis, and increased the proportion of animals that had no fat bodies, while EE2 had no effect on these traits. Simultaneous exposure to heat and EE2 had non-additive effects on juvenile body mass, which were dependent on treatment timing and further complicated by a negative effect of sex reversal on body mass. These results show that environmentally relevant exposure to EE2 does not diminish the masculinizing effects of high temperature. Instead, our findings on growth suggest that climate change and chemical pollution may have complex consequences for individual fitness and population persistence in species with environment-sensitive sex determination.

2021 ◽  
Vol 112 (2) ◽  
pp. 155-164
Author(s):  
Suzanne Edmands

Abstract Rising global temperatures threaten to disrupt population sex ratios, which can in turn cause mate shortages, reduce population growth and adaptive potential, and increase extinction risk, particularly when ratios are male biased. Sex ratio distortion can then have cascading effects across other species and even ecosystems. Our understanding of the problem is limited by how often studies measure temperature effects in both sexes. To address this, the current review surveyed 194 published studies of heat tolerance, finding that the majority did not even mention the sex of the individuals used, with <10% reporting results for males and females separately. Although the data are incomplete, this review assessed phylogenetic patterns of thermally induced sex ratio bias for 3 different mechanisms: sex-biased heat tolerance, temperature-dependent sex determination (TSD), and temperature-induced sex reversal. For sex-biased heat tolerance, documented examples span a large taxonomic range including arthropods, chordates, protists, and plants. Here, superior heat tolerance is more common in females than males, but the direction of tolerance appears to be phylogenetically fluid, perhaps due to the large number of contributing factors. For TSD, well-documented examples are limited to reptiles, where high temperature usually favors females, and fishes, where high temperature consistently favors males. For temperature-induced sex reversal, unambiguous cases are again limited to vertebrates, and high temperature usually favors males in fishes and amphibians, with mixed effects in reptiles. There is urgent need for further work on the full taxonomic extent of temperature-induced sex ratio distortion, including joint effects of the multiple contributing mechanisms.


2021 ◽  
Vol 9 ◽  
Author(s):  
Veronika Bókony ◽  
Nikolett Ujhegyi ◽  
Zsanett Mikó ◽  
Réka Erös ◽  
Attila Hettyey ◽  
...  

Sex reversal is a mismatch between genetic sex (sex chromosomes) and phenotypic sex (reproductive organs and secondary sexual traits). It can be induced in various ectothermic vertebrates by environmental perturbations, such as extreme temperatures or chemical pollution, experienced during embryonic or larval development. Theoretical studies and recent empirical evidence suggest that sex reversal may be widespread in nature and may impact individual fitness and population dynamics. So far, however, little is known about the performance of sex-reversed individuals in fitness-related traits compared to conspecifics whose phenotypic sex is concordant with their genetic sex. Using a novel molecular marker set for diagnosing genetic sex in agile frogs (Rana dalmatina), we investigated fitness-related traits in larvae and juveniles that underwent spontaneous female-to-male sex reversal in the laboratory. We found only a few differences in early life growth, development, and larval behavior between sex-reversed and sex-concordant individuals, and altogether these differences did not clearly support either higher or lower fitness prospects for sex-reversed individuals. Putting these results together with earlier findings suggesting that sex reversal triggered by heat stress may be associated with low fitness in agile frogs, we propose the hypothesis that the fitness consequences of sex reversal may depend on its etiology.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Edina Nemesházi ◽  
Szilvia Kövér ◽  
Veronika Bókony

Abstract Background One of the dangers of global climate change to wildlife is distorting sex ratios by temperature-induced sex reversals in populations where sex determination is not exclusively genetic, potentially leading to population collapse and/or sex-determination system transformation. Here we introduce a new concept on how these outcomes may be altered by mate choice if sex-chromosome-linked phenotypic traits allow females to choose between normal and sex-reversed (genetically female) males. Results We developed a theoretical model to investigate if an already existing autosomal allele encoding preference for sex-reversed males would spread and affect demographic and evolutionary processes under climate warming. We found that preference for sex-reversed males (1) more likely spread in ZW/ZZ than in XX/XY sex-determination systems, (2) in populations starting with ZW/ZZ system, it significantly hastened the transitions between different sex-determination systems and maintained more balanced adult sex ratio for longer compared to populations where all females preferred normal males; and (3) in ZW/ZZ systems with low but non-zero viability of WW individuals, a widespread preference for sex-reversed males saved the populations from early extinction. Conclusions Our results suggest that climate change may affect the evolution of mate choice, which in turn may influence the evolution of sex-determination systems, sex ratios, and thereby adaptive potential and population persistence. These findings show that preferences for sex-linked traits have special implications in species with sex reversal, highlighting the need for empirical research on the role of sex reversal in mate choice.


2015 ◽  
Vol 112 (11) ◽  
pp. E1237-E1246 ◽  
Author(s):  
A. Ross Brown ◽  
Stewart F. Owen ◽  
James Peters ◽  
Yong Zhang ◽  
Marta Soffker ◽  
...  

Endocrine disrupting chemicals (EDCs) are potent environmental contaminants, and their effects on wildlife populations could be exacerbated by climate change, especially in species with environmental sex determination. Endangered species may be particularly at risk because inbreeding depression and stochastic fluctuations in male and female numbers are often observed in the small populations that typify these taxa. Here, we assessed the interactive effects of water temperature and EDC exposure on sexual development and population viability of inbred and outbred zebrafish (Danio rerio). Water temperatures adopted were 28 °C (current ambient mean spawning temperature) and 33 °C (projected for the year 2100). The EDC selected was clotrimazole (at 2 μg/L and 10 μg/L), a widely used antifungal chemical that inhibits a key steroidogenic enzyme [cytochrome P450(CYP19) aromatase] required for estrogen synthesis in vertebrates. Elevated water temperature and clotrimazole exposure independently induced male-skewed sex ratios, and the effects of clotrimazole were greater at the higher temperature. Male sex ratio skews also occurred for the lower clotrimazole exposure concentration at the higher water temperature in inbred fish but not in outbred fish. Population viability analysis showed that population growth rates declined sharply in response to male skews and declines for inbred populations occurred at lower male skews than for outbred populations. These results indicate that elevated temperature associated with climate change can amplify the effects of EDCs and these effects are likely to be most acute in small, inbred populations exhibiting environmental sex determination and/or differentiation.


Parasitology ◽  
2015 ◽  
Vol 142 (10) ◽  
pp. 1290-1296 ◽  
Author(s):  
SIRPA KAUNISTO ◽  
LAURA HÄRKÖNEN ◽  
MARKUS J. RANTALA ◽  
RAINE KORTET

SUMMARYImmunity of parasites has been studied amazingly little, in spite of the fact that parasitic organisms, especially the arthropod parasites, need immunity to survive their own infections to successfully complete life cycles. Long-term effects of challenging environmental temperatures on immunity have remained unstudied in insects and parasites. Our study species, the deer ked (Lipoptena cervi; Linnaeus 1758), is an invasive, blood-feeding parasitic fly of cervids. Here, it was studied whether thermal stress during the pupal diapause stage could modify adult immunity (encapsulation capacity) in L. cervi. The effect of either a low temperature or high temperature peak, experienced during winter dormancy, on encapsulation response of active adult was tested. It was found that low temperature exposure during diapause, as long as the temperature is not too harsh, had a favourable effect on adult immunity. An abnormal, high temperature peak during pupal winter diapause significantly deteriorated the encapsulation capacity of emerged adults. The frequency and intensity of extreme weather events such as high temperature fluctuations are likely to increase with climate change. Thus, the climate change might have previously unknown influence on host-ectoparasite interactions, by affecting ectoparasite's immune defence and survival.


Sign in / Sign up

Export Citation Format

Share Document