scholarly journals Efficient genome editing in primary cells and in vivo using viral-derived “Nanoblades” loaded with Cas9/sgRNA ribonucleoproteins

2017 ◽  
Author(s):  
Philippe E. Mangeot ◽  
Valérie Risson ◽  
Floriane Fusil ◽  
Aline Marnef ◽  
Emilie Laurent ◽  
...  

AbstractProgrammable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into target cells can be technically challenging when working with primary cells or in vivo. Using engineered murine leukemia virus-like particles loaded with Cas9/sgRNA ribonucleoproteins (“Nanoblades”), we were able to induce efficient genome-editing in cell lines and primary cells including human induced pluripotent stem cells, human hematopoietic stem cells and mouse bone-marrow cells. Transgene-free Nanoblades were also capable of in vivo genome-editing in mouse embryos and in the liver of injected mice. Nanoblades can be complexed with donor DNA for “all-in-one” homology-directed repair or programmed with modified Cas9 variants to mediate transcriptional up-regulation of target genes. Nanoblades preparation process is simple, relatively inexpensive and can be easily implemented in any laboratory equipped for cellular biology.

1989 ◽  
Vol 9 (6) ◽  
pp. 2665-2671 ◽  
Author(s):  
G F Tidmarsh ◽  
S Heimfeld ◽  
C A Whitlock ◽  
I L Weissman ◽  
C E Müller-Sieburg

A novel stage in early B-lymphocyte differentiation has been identified in normal mouse bone marrow cells. Earlier work had demonstrated that bone marrow cells characterized by low levels of Thy-1 and lack of a panel of lineage markers (Thy-1lo Lin- cells) were highly enriched for pluripotent hematopoietic stem cells. In this paper, we present evidence that another bone marrow population, which expressed low levels of Thy-1 and coexpressed B220, a B-lineage-specific form of the leukocyte common antigen, contained early and potent precursors for B lymphocytes upon in vivo transfer to irradiated hosts. These Thy-1lo B220+ cells, comprising 1 to 2% of bone marrow cells, were enriched for large cells in the mitotic cycle; the population lacked significant pluripotent hematopoietic stem cell activity and myeloid-erythroid progenitors. Most strikingly, Thy-1lo B220+ cells represented a highly enriched population of bone marrow cells that could be targets of Abelson murine leukemia virus transformation. We propose that Thy-1lo B220+ bone marrow cells represent the earliest stage of committed lymphocyte progenitors, intermediate in differentiation between Thy-1lo Lin- pluripotent stem cells and, in the B lineage, Thy-1- B220+ pre-B cells.


1989 ◽  
Vol 9 (6) ◽  
pp. 2665-2671
Author(s):  
G F Tidmarsh ◽  
S Heimfeld ◽  
C A Whitlock ◽  
I L Weissman ◽  
C E Müller-Sieburg

A novel stage in early B-lymphocyte differentiation has been identified in normal mouse bone marrow cells. Earlier work had demonstrated that bone marrow cells characterized by low levels of Thy-1 and lack of a panel of lineage markers (Thy-1lo Lin- cells) were highly enriched for pluripotent hematopoietic stem cells. In this paper, we present evidence that another bone marrow population, which expressed low levels of Thy-1 and coexpressed B220, a B-lineage-specific form of the leukocyte common antigen, contained early and potent precursors for B lymphocytes upon in vivo transfer to irradiated hosts. These Thy-1lo B220+ cells, comprising 1 to 2% of bone marrow cells, were enriched for large cells in the mitotic cycle; the population lacked significant pluripotent hematopoietic stem cell activity and myeloid-erythroid progenitors. Most strikingly, Thy-1lo B220+ cells represented a highly enriched population of bone marrow cells that could be targets of Abelson murine leukemia virus transformation. We propose that Thy-1lo B220+ bone marrow cells represent the earliest stage of committed lymphocyte progenitors, intermediate in differentiation between Thy-1lo Lin- pluripotent stem cells and, in the B lineage, Thy-1- B220+ pre-B cells.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 74-83 ◽  
Author(s):  
SJ Szilvassy ◽  
S Cory

Abstract Efficient gene delivery to multipotential hematopoietic stem cells would greatly facilitate the development of effective gene therapy for certain hematopoietic disorders. We have recently described a rapid multiparameter sorting procedure for significantly enriching stem cells with competitive long-term lymphomyeloid repopulating ability (CRU) from 5-fluorouracil (5-FU)-treated mouse bone marrow. The sorted cells have now been tested as targets for retrovirus-mediated delivery of a marker gene, NeoR. They were cocultured for 4 days with fibroblasts producing a high titer of retrovirus in medium containing combinations of the hematopoietic growth factors interleukin-3 (IL-3), IL-6, c-kit ligand (KL), and leukemia inhibitory factor (LIF) and then injected into lethally irradiated recipients, together with sufficient “compromised” bone marrow cells to provide short-term support. Over 80% of the transplanted mice displayed high levels (> or = 20%) of donor- derived leukocytes when analyzed 4 to 6 months later. Proviral DNA was detected in 87% of these animals and, in half of them, the majority of the hematopoietic cells were marked. Thus, infection of the stem cells was most effective. The tissue and cellular distribution of greater than 100 unique clones in 55 mice showed that most sorted stem cells had lymphoid as well as myeloid repopulating potential. Secondary transplantation provided strong evidence for infection of very primitive stem cells because, in several instances, different secondary recipients displayed in their marrow, spleen, thymus and day 14 spleen colony-forming cells the same proviral integration pattern as the primary recipient. Neither primary engraftment nor marking efficiency varied for stem cells cultured in IL-3 + IL-6, IL-3 + IL-6 + KL, IL-3 + IL-6 + LIF, or all four factors, but those cultured in IL-3 + IL-6 + LIF appeared to have lower secondary engraftment potential. Provirus expression was detected in 72% of the strongly marked mice, albeit often at low levels. Highly efficient retroviral marking of purified lymphomyeloid repopulating stem cells should enhance studies of stem cell biology and facilitate analysis of genes controlling hematopoietic differentiation and transformation.


Blood ◽  
2011 ◽  
Vol 117 (14) ◽  
pp. 3737-3747 ◽  
Author(s):  
Dirk Heckl ◽  
Daniel C. Wicke ◽  
Martijn H. Brugman ◽  
Johann Meyer ◽  
Axel Schambach ◽  
...  

AbstractThpo/Mpl signaling plays an important role in the maintenance of hematopoietic stem cells (HSCs) in addition to its role in megakaryopoiesis. Patients with inactivating mutations in Mpl develop thrombocytopenia and aplastic anemia because of progressive loss of HSCs. Yet, it is unknown whether this loss of HSCs is an irreversible process. In this study, we used the Mpl knockout (Mpl−/−) mouse model and expressed Mpl from newly developed lentiviral vectors specifically in the physiologic Mpl target populations, namely, HSCs and megakaryocytes. After validating lineage-specific expression in vivo using lentiviral eGFP reporter vectors, we performed bone marrow transplantation of transduced Mpl−/− bone marrow cells into Mpl−/− mice. We show that restoration of Mpl expression from transcriptionally targeted vectors prevents lethal adverse reactions of ectopic Mpl expression, replenishes the HSC pool, restores stem cell properties, and corrects platelet production. In some mice, megakaryocyte counts were atypically high, accompanied by bone neo-formation and marrow fibrosis. Gene-corrected Mpl−/− cells had increased long-term repopulating potential, with a marked increase in lineage−Sca1+cKit+ cells and early progenitor populations in reconstituted mice. Transcriptome analysis of lineage−Sca1+cKit+ cells in Mpl-corrected mice showed functional adjustment of genes involved in HSC self-renewal.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3972-3972 ◽  
Author(s):  
Matthias Staudinger ◽  
Christian Kellner ◽  
Matthias Peipp ◽  
Natalie Schub ◽  
Andreas Humpe ◽  
...  

Abstract Although the mortality of autologous stem cell transplantation in contrast to allogeneic is low, in AML patients the lack of immune surveillance as well as contamination of the transplant with residual leukemic stem cells (LSC) limits its use. Therefore, elimination of LSC by targeted therapy may represent a promising therapeutic approach. Recently, CD96 was identified as marker antigen on AML-LSC (Hosen et al., PNAS 104: 11008, 2007). Here, by addressing CD96 with magnetic cell sorting (MACS) or using antibody dependent cellular cytotoxicity (ADCC), new strategies for engineering autologous stem cell grafts or for in vivo targeting of residual AML stem cells are presented. To evaluate the efficacy of depletion of LSC by MACS technology, grafts containing hematopoietic stem cells were spiked with CD96 positive AML cells. Using biotinylated CD96 antibody TH111 raised in our laboratory in combination with anti-biotin-micro beads (Miltenyi Biotech, Bergisch Gladbach, Germany) up to a 1000-fold depletion of targeted cells was achieved. The viability, cell count and the potential of hematopoietic progenitor cells (HPC) to proliferate and differentiate were not affected by this procedure as documented by flow cytometry and colony forming assays. As residual LSC residing within the patient may also account for AML relapse after high-dose chemotherapy and subsequent SCT, eradication of AML stem cells in vivo is desirable. To target CD96+ AML-LSC by ADCC, chimeric antibodies containing wild type or affinity maturated variable regions in combination with an optimized human IgG1Fc were generated by recombinant DNA technologies. Both recombinant antibodies were expressed in Hek 293 cells enriched to homogeneity by affinity chromatography and analyzed for their functional properties. As shown by flow cytometry, the antigen binding affinity of the maturated antibody was enhanced (EC50 0.6 μg/ml vs. 2 μg/ml). Moreover, as analyzed in standard ADCC assays, NK cell mediated lytic properties against CD96-positive target cells were elevated (maximum lysis: 52%) using the affinity maturated chimeric CD96 antibody (EC50: 0.02 μg/ml vs. 0.15 μg/ml). Thus, this CD96 purging strategy avoids unwanted transplantation of AML-LSC and may help to revitalize autologous stem cell transplantation in this indication. Although, specific side effects by CD96 application will have to be considered, this may allow for an additional therapeutic avenue to eliminate in vivo residual AML-LSC in autologous as well as in allogeneic situations. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (12) ◽  
pp. 3988-3994 ◽  
Author(s):  
H. Jeffrey Lawrence ◽  
Julie Christensen ◽  
Stephen Fong ◽  
Yu-Long Hu ◽  
Irving Weissman ◽  
...  

The homeobox gene Hoxa-9 is normally expressed in primitive bone marrow cells, and overexpression of Hoxa-9 markedly expands hematopoietic stem cells, suggesting a function in early hematopoiesis. We present evidence for major functional defects in Hoxa-9-/- hematopoietic stem cells. Hoxa-9-/- marrow cells have normal numbers of immunophenotypic stem cells (Lin-c-kit+flk-2-Sca-1+ [KLFS] cells). However, sublethally irradiated Hoxa-9-/- mice develop persistent pancytopenia, indicating unusual sensitivity to ionizing irradiation. In competitive transplantation assays, Hoxa-9-/- cells showed an 8-fold reduction in multilineage long-term repopulating ability, a defect not seen in marrow cells deficient for the adjacent Hoxa-10 gene. Single-cell cultures of KLFS cells showed a 4-fold reduction in large high-proliferation potential colonies. In liquid cultures, Hoxa-9-deficient Lin-Sca-1+ cells showed slowed proliferation (a 5-fold reduction in cell numbers at day 8) and delayed emergence of committed progenitors (a 5-fold decrease in colony-forming cells). Slowing of proliferation was accompanied by a delay in myeloid maturation, with a decrease in Gr-1hiMac-1hi cells at the end of the culture. Retroviral transduction with a Hoxa-9 expression vector dramatically enhanced the cytokine-driven proliferation and in vivo engraftment of Hoxa-9-/- marrow cells. Hoxa-9 appears to be specifically required for normal hematopoietic stem cell function both in vitro and in vivo.


1978 ◽  
Vol 147 (4) ◽  
pp. 1126-1141 ◽  
Author(s):  
N Rosenberg ◽  
D Baltimore

Abelson murine leukemia virus (A-MuLV)-transformed fibroblast nonproducer cells were used to prepare A-MuLV stocks containing a number of different helper viruses. The oncogenicity of the A-MuLV stocks was tested by animal inoculation and their ability to transform normal mouse bone marrow cells was measured in vitro. All of the A-MuLV stocks transformed fibroblast cells efficiently. However, only A-MuLV stocks prepared with helper viruses that are highly oncogenic were efficient in vivo and in vitro in hematopoietic cell transformation. In addition, inefficient helpers did not establish a stable infection in lymphoid nonproducer cells. Thus, helper virus has a more central role in lymphoid cell transformation than in fibroblast cell transformation.


Blood ◽  
2003 ◽  
Vol 102 (2) ◽  
pp. 506-513 ◽  
Author(s):  
Derek A. Persons ◽  
Esther R. Allay ◽  
Nobukuni Sawai ◽  
Phillip W. Hargrove ◽  
Thomas P. Brent ◽  
...  

AbstractSuccessful gene therapy of β-thalassemia will require replacement of the abnormal erythroid compartment with erythropoiesis derived from genetically corrected, autologous hematopoietic stem cells (HSCs). However, currently attainable gene transfer efficiencies into human HSCs are unlikely to yield sufficient numbers of corrected cells for a clinical benefit. Here, using a murine model of β-thalassemia, we demonstrate for the first time that selective enrichment in vivo of transplanted, drug-resistant HSCs can be used therapeutically and may therefore be a useful approach to overcome limiting gene transfer. We used an oncoretroviral vector to transfer a methylguanine methyltransferase (MGMT) drug-resistance gene into normal bone marrow cells. These cells were transplanted into β-thalassemic mice given nonmyeloablative pretransplantation conditioning with temozolomide (TMZ) and O6-benzylguanine (BG). A majority of mice receiving 2 additional courses of TMZ/BG demonstrated in vivo selection of the drug-resistant cells and amelioration of anemia, compared with untreated control animals. These results were extended using a novel γ-globin/MGMT dual gene lentiviral vector. Following drug treatment, normal mice that received transduced cells had an average 67-fold increase in γ-globin expressing red cells. These studies demonstrate that MGMT-based in vivo selection may be useful to increase genetically corrected cells to therapeutic levels in patients with β-thalassemia.


2000 ◽  
Vol 74 (21) ◽  
pp. 9895-9902 ◽  
Author(s):  
Jean-Claude Twizere ◽  
Pierre Kerkhofs ◽  
Arsène Burny ◽  
Daniel Portetelle ◽  
Richard Kettmann ◽  
...  

ABSTRACT Bovine leukemia virus (BLV) Tax protein, a transcriptional activator of viral expression, is essential for viral replication in vivo. Tax is believed to be involved in leukemogenesis because of its second function, immortalization of primary cells in vitro. These activities of Tax can be dissociated on the basis of point mutations within specific regions of the protein. For example, mutation of the phosphorylation sites at serines 106 and 293 abrogates immortalization potential in vitro but maintains transcriptional activity. This type of mutant is thus particularly useful for unraveling the role of Tax immortalization activity during leukemogenesis independently of viral replication. In this report, we describe the biological properties of BLV recombinant proviruses mutated in the Tax phosphorylation sites (BLVTax106+293). Titration of the proviral loads by semiquantitative PCR revealed that the BLV mutants propagated at wild-type levels in vivo. Furthermore, two animals (sheep 480 and 296) infected with BLVTax106+293 developed leukemia or lymphosarcoma after 16 and 36 months, respectively. These periods of time are within the normal range of latencies preceding the onset of pathogenesis induced by wild-type viruses. The phenotype of the mutant-infected cells was characteristic of a B lymphocyte (immunoglobulin M positive) expressing CD11b and CD5 (except at the final stage for the latter marker), a pattern that is typical of wild-type virus-infected target cells. Interestingly, the transformed B lymphocytes from sheep 480 also coexpressed the CD8 marker, a phenotype rarely observed in tumor biopsies from chronic lymphocytic leukemia patients. Finally, direct sequencing of the tax gene demonstrated that the leukemic cells did not harbor revertant proviruses. We conclude that viruses expressing a Tax mutant unable to transform primary cells in culture are still pathogenic in the sheep animal model. Our data thus provide a clear example of the discordant conclusions that can be drawn from in vitro immortalization assays and in vivo experiments. These observations could be of interest for other systems, such as the related human T-cell leukemia virus type 1, which currently lack animal models allowing the study of the leukemogenic process.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5805-5805
Author(s):  
Lukun Zhou ◽  
Shuang Liu ◽  
Chuanyi M. Lu ◽  
Jianfeng Yao ◽  
Yuyan Shen ◽  
...  

Abstract Liver injury associated with veno-occlusive disease and graft-versus-host disease (GVHD) is a frequent and severe complication of hematopoietic stem cell transplantation, and remains an important cause of transplant-related mortality. Bone marrow derived mesenchymal stem cells (MSCs) have been evaluated for the prevention and treatment of refractory GVHD. However, poor cell viability has limited the therapeutic capacity of mesenchymal stromal cell therapy in vivo. In this study, we genetically engineered C57BL/6 mouse bone marrow MSCs using ex vivo retroviral transduction to overexpress Akt1, a serine threonine kinase and pro-survival signal protein, and tested the hypothesis that Akt1-expressing MSCs (Akt1-MSCs) are more resistant to apoptosis and can ameliorate acute liver injury induced by concanavalin A (ConA) in BALB/c mice. Cell proliferation and apoptosis analyses showed that, under both regular culture and high concentration IFN-γ (100 ng/mL) stimulation conditions, Akt1-GFP-MSCs had proliferation and survival (anti-apoptotic) advantages with down-regulated apoptosis pathways, compared to control GFP-MSCs. Twenty-four hours after receiving lethal dose of ConA (40 mg/kg, intravenous) (N=10 each group), no mouse survived, with or without 1x106 Akt1-MSCs or GFP-MSCs administration (intravenous); however, 3 and 1 survived in the 5×106 Akt1-MSCs group and 5×106 GFP-MSCs groups, respectively. In subsequent sub-lethal dose ConA (20 mg/kg) experiments, compared to GFP-MSCs, mice received Akt1-MSCs administration had significantly lower serum AST, ALT, TNF-α and IFN-γ levels and less histopathological abnormalities. In addition, Akt1-MSCs treated mice had significantly higher serum concentrations of IL-10, vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF). In vivo imaging showed that, hepatic fluorescence signal in sub-lethal ConA+Akt1-MSCs group was significantly stronger than ConA+GFP-MSCs group on day 0, and persisted up to 14 days, whereas the signal in ConA+GFP-MSCs, Akt1-MSCs and GFP-MSCs groups was negligible on both day 7 and day 14. Thus, bone marrow derived MSCs genetically enhanced with Akt1 had survival advantage in vitro and in vivo, and have the potential to be a potent therapy for prevention and amelioration of GVHD-associated liver impairment. Further translational pre-clinical studies are ongoing to further determine the efficacy, dosage and timing of administration of Akt1-MSCs in animal models. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document