scholarly journals Surface GluA1 and glutamatergic transmission are increased in cortical neurons of a VPS35 D620N knock-in mouse model of parkinsonism and altered by LRRK2 kinase inhibition

2021 ◽  
Author(s):  
Chelsie A Kadgien ◽  
Anusha Kamesh ◽  
Jaskaran Khinda ◽  
Li Ping Cao ◽  
Jesse Fox ◽  
...  

AbstractVacuolar protein sorting 35 (VPS35) regulates receptor recycling from endosomes. A missense mutation in VPS35 (D620N) leads to autosomal-dominant, late-onset Parkinson’s disease. Here, we use a VPS35 D620N knock-in mouse to study the neurobiology of this mutation. In brain tissue, we confirm previous findings that the mutation results in reduced binding of VPS35 with WASH-complex member FAM21, and robustly elevated phosphorylation of the LRRK2 kinase substrate Rab10. In cultured cortical neurons, the mutation results in increased endosomal recycling protein density (VPS35-FAM21 co-clusters and Rab11 clusters), glutamate release, and GluA1 surface expression. LRRK2 kinase inhibition exerted genotype-specific effects on GluA1 surface expression, but did not impact glutamate release phenotypes. These results improve our understanding of the early effects of the D620N mutation on cellular functions that are specific to neurons. These observations provide candidate pathophysiological pathways that may drive eventual transition to late-stage parkinsonism in VPS35 families, and support a synaptopathy model of neurodegeneration.

2021 ◽  
Author(s):  
Chelsie Kadgien ◽  
Anusha Kamesh ◽  
Jaskaran Khinda ◽  
LiPing Cao ◽  
Jesse Fox ◽  
...  

Abstract Background Vacuolar protein sorting 35 (VPS35) regulates neurotransmitter receptor recycling from endosomes. A missense mutation (D620N) in VPS35 leads to autosomal-dominant, late-onset Parkinson’s disease. Methods Here, we study the basic neurobiology of VPS35 and Parkinson’s disease mutation effects in the D620N knock-in mouse and the effect of leucine-rich repeat kinase 2 (LRRK2) inhibition on synaptic phenotypes. The study was conducted using a VPS35 D620N knock-in mouse that expresses VPS35 at endogenous levels. Protein levels, phosphorylation states, and binding ratios in brain lysates from knock-in mice and wild-type littermates were assayed by co-immunoprecipitation and western blot. Dendritic protein co-localization, AMPA receptor surface expression, synapse density, and glutamatergic synapse activity in primary cortical cultures from knock-in and wild-type littermates were assayed using immunocytochemistry and whole-cell patch clamp electrophysiology. Results In brain tissue, we confirm VPS35 forms complexes with LRRK2 and AMPA-type glutamate receptor GluA1 subunits, in addition to NMDA-type glutamate receptor GluN1 subunits and D2-type dopamine receptors. Receptor and LRRK2 binding was unaltered in D620N knock-in mice, but we confirm the mutation results in reduced binding of VPS35 with WASH complex member FAM21, and increases phosphorylation of the LRRK2 kinase substrate Rab10, which is reversed by LRRK2 kinase inhibition in vivo. In cultured cortical neurons from knock-in mice, pRab10 is also increased, and reversed by LRRK2 inhibition. The mutation also results in increased endosomal recycling protein cluster density (VPS35-FAM21 co-clusters and Rab11 clusters), glutamate transmission, and GluA1 surface expression. LRRK2 kinase inhibition, which reversed Rab10 hyper-phosphorylation, did not rescue elevated glutamate release or surface GluA1 expression in knock-in neurons, but did alter AMPAR traffic in wild-type cells. Conclusions The results improve our understanding of the cell biology of VPS35, and the consequences of the D620N mutation in developing neuronal networks. Together the data support a chronic synaptopathy model for latent neurodegeneration, providing phenotypes and candidate pathophysiological stresses that may drive eventual transition to late-stage parkinsonism in VPS35 PD. The study demonstrates the VPS35 mutation has effects that are independent of ongoing LRRK2 kinase activity, and that LRRK2 kinase inhibition alters basal physiology of glutamate synapses in vitro.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Chelsie A. Kadgien ◽  
Anusha Kamesh ◽  
Austen J. Milnerwood

AbstractVacuolar protein sorting 35 (VPS35) regulates neurotransmitter receptor recycling from endosomes. A missense mutation (D620N) in VPS35 leads to autosomal-dominant, late-onset Parkinson’s disease. Here, we study the basic neurobiology of VPS35 and Parkinson’s disease mutation effects in the D620N knock-in mouse and the effect of leucine-rich repeat kinase 2 (LRRK2) inhibition on synaptic phenotypes. The study was conducted using a VPS35 D620N knock-in mouse that expresses VPS35 at endogenous levels. Protein levels, phosphorylation states, and binding ratios in brain lysates from knock-in mice and wild-type littermates were assayed by co-immunoprecipitation and western blot. Dendritic protein co-localization, AMPA receptor surface expression, synapse density, and glutamatergic synapse activity in primary cortical cultures from knock-in and wild-type littermates were assayed using immunocytochemistry and whole-cell patch clamp electrophysiology. In brain tissue, we confirm VPS35 forms complexes with LRRK2 and AMPA-type glutamate receptor GluA1 subunits, in addition to NMDA-type glutamate receptor GluN1 subunits and D2-type dopamine receptors. Receptor and LRRK2 binding was unaltered in D620N knock-in mice, but we confirm the mutation results in reduced binding of VPS35 with WASH complex member FAM21, and increases phosphorylation of the LRRK2 kinase substrate Rab10, which is reversed by LRRK2 kinase inhibition in vivo. In cultured cortical neurons from knock-in mice, pRab10 is also increased, and reversed by LRRK2 inhibition. The mutation also results in increased endosomal recycling protein cluster density (VPS35-FAM21 co-clusters and Rab11 clusters), glutamate transmission, and GluA1 surface expression. LRRK2 kinase inhibition, which reversed Rab10 hyper-phosphorylation, did not rescue elevated glutamate release or surface GluA1 expression in knock-in neurons, but did alter AMPAR traffic in wild-type cells. The results improve our understanding of the cell biology of VPS35, and the consequences of the D620N mutation in developing neuronal networks. Together the data support a chronic synaptopathy model for latent neurodegeneration, providing phenotypes and candidate pathophysiological stresses that may drive eventual transition to late-stage parkinsonism in VPS35 PD. The study demonstrates the VPS35 mutation has effects that are independent of ongoing LRRK2 kinase activity, and that LRRK2 kinase inhibition alters basal physiology of glutamate synapses in vitro.


2021 ◽  
Author(s):  
Chelsie Kadgien ◽  
Anusha Kamesh ◽  
Jaskaran Khinda ◽  
Li Ping Cao ◽  
Jesse Fox ◽  
...  

Abstract Vacuolar protein sorting 35 (VPS35) regulates neurotransmitter receptor recycling from endosomes. A missense mutation (D620N) in VPS35 leads to autosomal-dominant, late-onset Parkinson’s disease. Here, we study the basic neurobiology of VPS35 and Parkinson’s disease mutation effects in the D620N knock-in mouse and the effect of leucine-rich repeat kinase 2 (LRRK2) inhibition on synaptic phenotypes. The study was conducted using a VPS35 D620N knock-in mouse that expresses VPS35 at endogenous levels. Protein levels, phosphorylation states, and binding ratios in brain lysates from knock-in mice and wild-type littermates were assayed by co-immunoprecipitation and western blot. Dendritic protein co-localization, AMPA receptor surface expression, synapse density, and glutamatergic synapse activity in primary cortical cultures from knock-in and wild-type littermates were assayed using immunocytochemistry and whole-cell patch clamp electrophysiology. In brain tissue, we confirm VPS35 forms complexes with LRRK2 and AMPA-type glutamate receptor GluA1 subunits, in addition to NMDA-type glutamate receptor GluN1 subunits and D2-type dopamine receptors. Receptor and LRRK2 binding was unaltered in D620N knock-in mice, but we confirm the mutation results in reduced binding of VPS35 with WASH complex member FAM21, and increases phosphorylation of the LRRK2 kinase substrate Rab10, which is reversed by LRRK2 kinase inhibition in vivo. In cultured cortical neurons from knock-in mice, pRab10 is also increased, and reversed by LRRK2 inhibition. The mutation also results in increased endosomal recycling protein cluster density (VPS35-FAM21 co-clusters and Rab11 clusters), glutamate transmission, and GluA1 surface expression. LRRK2 kinase inhibition, which reversed Rab10 hyper-phosphorylation, did not rescue elevated glutamate release or surface GluA1 expression in knock-in neurons, but did alter AMPAR traffic in wild-type cells. The results improve our understanding of the cell biology of VPS35, and the consequences of the D620N mutation in developing neuronal networks. Together the data support a chronic synaptopathy model for latent neurodegeneration, providing phenotypes and candidate pathophysiological stresses that may drive eventual transition to late-stage parkinsonism in VPS35 PD. The study demonstrates the VPS35 mutation has effects that are independent of ongoing LRRK2 kinase activity, and that LRRK2 kinase inhibition alters basal physiology of glutamate synapses in vitro.


Author(s):  
Zhiyong Liu ◽  
Enquan Xu ◽  
Hien Tran Zhao ◽  
Tracy Cole ◽  
Andrew B. West

AbstractGenetic variation in LRRK2 associates with susceptibility to Parkinson’s disease, Crohn’s disease, and mycobacteria infection, with high expression of LRRK2, and the LRRK2 kinase substrate Rab10, in phagocytic cells in the immune system. In mouse and human primary monocyte-derived macrophages, dendritic cells, and microglia-like cells, we find that Rab10 specifically regulates a specialized form of endocytosis known as macropinocytosis, without affecting phagocytosis or clathrin-mediated endocytosis. LRRK2 phosphorylates cytoplasmic PI(3,4,5)P3-positive GTP-Rab10 early macropinosomes, before EEA1 and Rab5 recruitment occurs. Macropinosome cargo in macrophages includes CCR5, CD11b, and MHCII, with LRRK2-phosphorylation of Rab10 potently blocking EHBP1L1-mediated recycling tubules and cargo turnover. EHBP1L1 over-expression competitively inhibits LRRK2-phosphorylation of Rab10, mimicking the effects of LRRK2 kinase inhibition in promoting cargo recycling. Both Rab10 knockdown and LRRK2 kinase inhibition potently suppresses the maturation of macropinosome-derived CCR5-loaded signaling endosomes important for CCL5-induced AKT-activation and chemotaxis. These data support a novel axis in the endolysosomal system whereby LRRK2-mediated Rab10 phosphorylation stalls vesicle fast-recycling to promote PI3K-AKT signal transduction.


2007 ◽  
Vol 405 (2) ◽  
pp. 307-317 ◽  
Author(s):  
Mahaboobi Jaleel ◽  
R. Jeremy Nichols ◽  
Maria Deak ◽  
David G. Campbell ◽  
Frank Gillardon ◽  
...  

Mutations in the LRRK2 (leucine-rich repeat kinase-2) gene cause late-onset PD (Parkinson's disease). LRRK2 contains leucine-rich repeats, a GTPase domain, a COR [C-terminal of Roc (Ras of complex)] domain, a kinase and a WD40 (Trp-Asp 40) motif. Little is known about how LRRK2 is regulated, what its physiological substrates are or how mutations affect LRRK2 function. Thus far LRRK2 activity has only been assessed by autophosphorylation and phosphorylation of MBP (myelin basic protein), which is catalysed rather slowly. We undertook a KESTREL (kinase substrate tracking and elucidation) screen in rat brain extracts to identify proteins that were phosphorylated by an activated PD mutant of LRRK2 (G2019S). This led to the discovery that moesin, a protein which anchors the actin cytoskeleton to the plasma membrane, is efficiently phosphorylated by LRRK2, at Thr558, a previously identified in-vivo-phosphorylation site that regulates the ability of moesin to bind actin. LRRK2 also phosphorylated ezrin and radixin, which are related to moesin, at the residue equivalent to Thr558, as well as a peptide (LRRKtide: RLGRDKYKTLRQIRQ) encompassing Thr558. We exploited these findings to determine how nine previously reported PD mutations of LRRK2 affected kinase activity. Only one of the mutations analysed, namely G2019S, stimulated kinase activity. Four mutations inhibited LRRK2 kinase activity (R1941H, I2012T, I2020T and G2385R), whereas the remainder (R1441C, R1441G, Y1699C and T2356I) did not influence activity. Therefore the manner in which LRRK2 mutations induce PD is more complex than previously imagined and is not only caused by an increase in LRRK2 kinase activity. Finally, we show that the minimum catalytically active fragment of LRRK2 requires an intact GTPase, COR and kinase domain, as well as a WD40 motif and a C-terminal tail. The results of the present study suggest that moesin, ezrin and radixin may be LRRK2 substrates, findings that have been exploited to develop the first robust quantitative assay to measure LRRK2 kinase activity.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Enquan Xu ◽  
Ravindra Boddu ◽  
Hisham A. Abdelmotilib ◽  
Arpine Sokratian ◽  
Kaela Kelly ◽  
...  

Abstract Background Leucine rich repeat kinase 2 (LRRK2) and SNCA are genetically linked to late-onset Parkinson’s disease (PD). Aggregated α-synuclein pathologically defines PD. Recent studies identified elevated LRRK2 expression in pro-inflammatory CD16+ monocytes in idiopathic PD, as well as increased phosphorylation of the LRRK2 kinase substrate Rab10 in monocytes in some LRRK2 mutation carriers. Brain-engrafting pro-inflammatory monocytes have been implicated in dopaminergic neurodegeneration in PD models. Here we examine how α-synuclein and LRRK2 interact in monocytes and subsequent neuroinflammatory responses. Methods Human and mouse monocytes were differentiated to distinct transcriptional states resembling macrophages, dendritic cells, or microglia, and exposed to well-characterized human or mouse α-synuclein fibrils. LRRK2 expression and LRRK2-dependent Rab10 phosphorylation were measured with monoclonal antibodies, and myeloid cell responses to α-synuclein fibrils in R1441C-Lrrk2 knock-in mice or G2019S-Lrrk2 BAC mice were evaluated by flow cytometry. Chemotaxis assays were performed with monocyte-derived macrophages stimulated with α-synuclein fibrils and microglia in Boyden chambers. Results α-synuclein fibrils robustly stimulate LRRK2 and Rab10 phosphorylation in human and mouse macrophages and dendritic-like cells. In these cells, α-synuclein fibrils stimulate LRRK2 through JAK-STAT activation and intrinsic LRRK2 kinase activity in a feed-forward pathway that upregulates phosphorylated Rab10. In contrast, LRRK2 expression and Rab10 phosphorylation are both suppressed in microglia-like cells that are otherwise highly responsive to α-synuclein fibrils. Corroborating these results, LRRK2 expression in the brain parenchyma occurs in pro-inflammatory monocytes infiltrating from the periphery, distinct from brain-resident microglia. Mice expressing pathogenic LRRK2 mutations G2019S or R1441C have increased numbers of infiltrating pro-inflammatory monocytes in acute response to α-synuclein fibrils. In primary cultured macrophages, LRRK2 kinase inhibition dampens α-synuclein fibril and microglia-stimulated chemotaxis. Conclusions Pathologic α-synuclein activates LRRK2 expression and kinase activity in monocytes and induces their recruitment to the brain. These results predict that LRRK2 kinase inhibition may attenuate damaging pro-inflammatory monocyte responses in the brain.


Author(s):  
Vesna Lazarevic ◽  
Yunting Yang ◽  
Ivana Flais ◽  
Per Svenningsson

AbstractKetamine produces a rapid antidepressant response in patients with major depressive disorder (MDD), but the underlying mechanisms appear multifaceted. One hypothesis, proposes that by antagonizing NMDA receptors on GABAergic interneurons, ketamine disinhibits afferens to glutamatergic principal neurons and increases extracellular glutamate levels. However, ketamine seems also to reduce rapid glutamate release at some synapses. Therefore, clinical studies in MDD patients have stressed the need to identify mechanisms whereby ketamine decreases presynaptic activity and glutamate release. In the present study, the effect of ketamine and its antidepressant metabolite, (2R,6R)-HNK, on neuronally derived glutamate release was examined in rodents. We used FAST methodology to measure depolarization-evoked extracellular glutamate levels in vivo in freely moving or anesthetized animals, synaptosomes to detect synaptic recycling ex vivo and primary cortical neurons to perform functional imaging and to examine intracellular signaling in vitro. In all these versatile approaches, ketamine and (2R,6R)-HNK reduced glutamate release in a manner which could be blocked by AMPA receptor antagonism. Antagonism of adenosine A1 receptors, which are almost exclusively expressed at nerve terminals, also counteracted ketamine’s effect on glutamate release and presynaptic activity. Signal transduction studies in primary neuronal cultures demonstrated that ketamine reduced P-T286-CamKII and P-S9-Synapsin, which correlated with decreased synaptic vesicle recycling. Moreover, systemic administration of A1R antagonist counteracted the antidepressant-like actions of ketamine and (2R,6R)-HNK in the forced swim test. To conclude, by studying neuronally released glutamate, we identified a novel retrograde adenosinergic feedback mechanism that mediate inhibitory actions of ketamine on glutamate release that may contribute to its rapid antidepressant action.


2021 ◽  
Author(s):  
Ilona Har-Paz ◽  
Elor Arieli ◽  
Anan Moran

AbstractThe E4 allele of apolipoprotein E (apoE4) is the strongest genetic risk factor for late-onset Alzheimer’s disease (AD). However, apoE4 may cause innate brain abnormalities before the appearance of AD related neuropathology. Understanding these primary dysfunctions is vital for early detection of AD and the development of therapeutic strategies for it. Recently we have shown impaired extra-hippocampal memory in young apoE4 mice – a deficit that was correlated with attenuated structural pre-synaptic plasticity in cortical and subcortical regions. Here we test the hypothesis that these early structural deficits impact learning via changes in basal and stimuli evoked neuronal activity. We recorded extracellular neuronal activity from the gustatory cortex (GC) of three-month-old humanized apoE4 and wildtype rats, before and after conditioned taste aversion (CTA) training. Despite normal sucrose drinking behavior before CTA, young apoE4 rats showed impaired CTA learning, consistent with our previous results in apoE4 mice. This behavioral deficit was correlated with decreased basal and taste-evoked firing rates in both putative excitatory and inhibitory GC neurons. Single neuron and ensemble analyses of taste coding demonstrated that apoE4 neurons could be used to correctly classify tastes, but were unable to undergo plasticity to support learning. Our results suggest that apoE4 impacts brain excitability and plasticity early in life and may act as an initiator for later AD pathologies.Significant statementThe ApoE4 allele is the strongest genetic risk-factor for late-onset Alzheimer’s disease (AD), yet the link between apoE4 and AD is still unclear. Recent molecular and in-vitro studies suggest that apoE4 interferes with normal brain functions decades before the development of its related AD neuropathology. Here we recorded the activity of cortical neurons from young apoE4 rats during extra-hippocampal learning to study early apoE4 neuronal activity abnormalities, and their effects over coding capacities. We show that apoE4 drastically reduces basal and stimuli-evoked cortical activity in both excitatory and inhibitory neurons. The apoE4-induced activity attenuation did not prevent coding of stimuli identity and valence, but impaired capacity to undergo activity changes to support learning. Our findings support the hypothesis that apoE4 interfere with normal neuronal plasticity early in life; a deficit that may lead to late-onset AD development.


2021 ◽  
Author(s):  
Maria Kedariti ◽  
Emanuele Frattini ◽  
Pascale Baden ◽  
Susanna Cogo ◽  
Laura Civiero ◽  
...  

AbstractLRRK2 is a kinase involved in different cellular functions, including autophagy, endolysosomal pathways and vesicle trafficking. Mutations in LRRK2 cause autosomal dominant forms of Parkinson’s disease (PD). Heterozygous mutations in GBA1, the gene encoding the lysosomal enzyme glucocerebrosidase (GCase), are the most common genetic risk factors for PD. Moreover, GCase function is altered in idiopathic PD and in other genetic forms of the disease. Recent work suggests that LRRK2 kinase activity can regulate GCase function. However, both a positive and a negative correlation have been described. To gain insights into the impact of LRRK2 on GCase, we investigated GCase levels and activity in LRRK2 G2019S knockin mice, in clinical biospecimens from PD patients carrying this mutation and in patient-derived cellular models. In these models we found a positive correlation between the activities of LRRK2 and GCase, which was further confirmed in cell lines with genetic and pharmacological manipulation of LRRK2 kinase activity. Overall, our study indicates that LRRK2 kinase activity affects both the levels and the catalytic activity of GCase.


2015 ◽  
Vol 355 (3) ◽  
pp. 397-409 ◽  
Author(s):  
Matthew J. Fell ◽  
Christian Mirescu ◽  
Kallol Basu ◽  
Boonlert Cheewatrakoolpong ◽  
Duane E. DeMong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document