scholarly journals Single Cell Biological Microlasers Powered by Deep Learning

2021 ◽  
Author(s):  
Zhen Qiao ◽  
Wen Sun ◽  
Na Zhang ◽  
Randall Ang Jie ◽  
Sing Yian Chew ◽  
...  

AbstractCellular lasers are cutting-edge technologies for biomedical applications. Due to the enhanced interactions between light and cells in microcavities, cellular properties and subtle changes of cells can be significantly reflected by the laser emission characteristics. In particular, transverse laser modes from single-cell lasers which utilize Fabry–Pérot cavities are highly correlated to the spatial biophysical properties of cells. However, the high chaotic and complex variation of laser modes limits their practical applications for cell detections. Deep learning technique has demonstrated its powerful capability in solving complex imaging problems, which is expected to be applied for cell detections based on laser mode imaging. In this study, deep learning technique was applied to analyze laser modes generated from single-cell lasers, in which a correlation between laser modes and physical properties of cells was built. As a proof-of-concept, we demonstrated the predictions of cell sizes using deep learning based on laser mode imaging. In the first part, bioinspired cell models were fabricated to systematically study how cell sizes affect the characteristics of laser modes. By training a convolutional neuron network (CNN) model with laser mode images, predictions of cell model diameters with a sub-wavelength accuracy were achieved. In the second part, deep learning was employed to study laser modes generated from biological cells. By training a CNN model with laser mode images acquired from astrocyte cells, predictions of cell sizes with a sub-wavelength accuracy were also achieved. The results show the great potential of laser mode imaging integrated with deep learning for cell analysis and biophysical studies.

2020 ◽  
Vol 71 (7) ◽  
pp. 868-880
Author(s):  
Nguyen Hong-Quan ◽  
Nguyen Thuy-Binh ◽  
Tran Duc-Long ◽  
Le Thi-Lan

Along with the strong development of camera networks, a video analysis system has been become more and more popular and has been applied in various practical applications. In this paper, we focus on person re-identification (person ReID) task that is a crucial step of video analysis systems. The purpose of person ReID is to associate multiple images of a given person when moving in a non-overlapping camera network. Many efforts have been made to person ReID. However, most of studies on person ReID only deal with well-alignment bounding boxes which are detected manually and considered as the perfect inputs for person ReID. In fact, when building a fully automated person ReID system the quality of the two previous steps that are person detection and tracking may have a strong effect on the person ReID performance. The contribution of this paper are two-folds. First, a unified framework for person ReID based on deep learning models is proposed. In this framework, the coupling of a deep neural network for person detection and a deep-learning-based tracking method is used. Besides, features extracted from an improved ResNet architecture are proposed for person representation to achieve a higher ReID accuracy. Second, our self-built dataset is introduced and employed for evaluation of all three steps in the fully automated person ReID framework.


2021 ◽  
pp. 1-12
Author(s):  
Gaurav Sarraf ◽  
Anirudh Ramesh Srivatsa ◽  
MS Swetha

With the ever-rising threat to security, multiple industries are always in search of safer communication techniques both in rest and transit. Multiple security institutions agree that any systems security can be modeled around three major concepts: Confidentiality, Availability, and Integrity. We try to reduce the holes in these concepts by developing a Deep Learning based Steganography technique. In our study, we have seen, data compression has to be at the heart of any sound steganography system. In this paper, we have shown that it is possible to compress and encode data efficiently to solve critical problems of steganography. The deep learning technique, which comprises an auto-encoder with Convolutional Neural Network as its building block, not only compresses the secret file but also learns how to hide the compressed data in the cover file efficiently. The proposed techniques can encode secret files of the same size as of cover, or in some sporadic cases, even larger files can be encoded. We have also shown that the same model architecture can theoretically be applied to any file type. Finally, we show that our proposed technique surreptitiously evades all popular steganalysis techniques.


2021 ◽  
Vol 7 (2) ◽  
pp. 12
Author(s):  
Yousef I. Mohamad ◽  
Samah S. Baraheem ◽  
Tam V. Nguyen

Automatic event recognition in sports photos is both an interesting and valuable research topic in the field of computer vision and deep learning. With the rapid increase and the explosive spread of data, which is being captured momentarily, the need for fast and precise access to the right information has become a challenging task with considerable importance for multiple practical applications, i.e., sports image and video search, sport data analysis, healthcare monitoring applications, monitoring and surveillance systems for indoor and outdoor activities, and video captioning. In this paper, we evaluate different deep learning models in recognizing and interpreting the sport events in the Olympic Games. To this end, we collect a dataset dubbed Olympic Games Event Image Dataset (OGED) including 10 different sport events scheduled for the Olympic Games Tokyo 2020. Then, the transfer learning is applied on three popular deep convolutional neural network architectures, namely, AlexNet, VGG-16 and ResNet-50 along with various data augmentation methods. Extensive experiments show that ResNet-50 with the proposed photobombing guided data augmentation achieves 90% in terms of accuracy.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 517
Author(s):  
Seong-heum Kim ◽  
Youngbae Hwang

Owing to recent advancements in deep learning methods and relevant databases, it is becoming increasingly easier to recognize 3D objects using only RGB images from single viewpoints. This study investigates the major breakthroughs and current progress in deep learning-based monocular 3D object detection. For relatively low-cost data acquisition systems without depth sensors or cameras at multiple viewpoints, we first consider existing databases with 2D RGB photos and their relevant attributes. Based on this simple sensor modality for practical applications, deep learning-based monocular 3D object detection methods that overcome significant research challenges are categorized and summarized. We present the key concepts and detailed descriptions of representative single-stage and multiple-stage detection solutions. In addition, we discuss the effectiveness of the detection models on their baseline benchmarks. Finally, we explore several directions for future research on monocular 3D object detection.


2021 ◽  
pp. 1-34
Author(s):  
Kadam Vikas Samarthrao ◽  
Vandana M. Rohokale

Email has sustained to be an essential part of our lives and as a means for better communication on the internet. The challenge pertains to the spam emails residing a large amount of space and bandwidth. The defect of state-of-the-art spam filtering methods like misclassification of genuine emails as spam (false positives) is the rising challenge to the internet world. Depending on the classification techniques, literature provides various algorithms for the classification of email spam. This paper tactics to develop a novel spam detection model for improved cybersecurity. The proposed model involves several phases like dataset acquisition, feature extraction, optimal feature selection, and detection. Initially, the benchmark dataset of email is collected that involves both text and image datasets. Next, the feature extraction is performed using two sets of features like text features and visual features. In the text features, Term Frequency-Inverse Document Frequency (TF-IDF) is extracted. For the visual features, color correlogram and Gray-Level Co-occurrence Matrix (GLCM) are determined. Since the length of the extracted feature vector seems to the long, the optimal feature selection process is done. The optimal feature selection is performed by a new meta-heuristic algorithm called Fitness Oriented Levy Improvement-based Dragonfly Algorithm (FLI-DA). Once the optimal features are selected, the detection is performed by the hybrid learning technique that is composed of two deep learning approaches named Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN). For improving the performance of existing deep learning approaches, the number of hidden neurons of RNN and CNN is optimized by the same FLI-DA. Finally, the optimized hybrid learning technique having CNN and RNN classifies the data into spam and ham. The experimental outcomes show the ability of the proposed method to perform the spam email classification based on improved deep learning.


Sign in / Sign up

Export Citation Format

Share Document