scholarly journals Pupillary aperture is a potential biomarker of movement preparation

2021 ◽  
Author(s):  
Pragya Pandey ◽  
Supriya Ray

ABSTRACTIn response to variable light intensity, the pupils reflexively constrict or dilate to maintain a uniform retinal illumination. The pupillary light reflex (PLR) pathway receives projections from two important areas in primates’ brain that plan rapid saccadic eye-movement – frontal eye field (FEF) and superior colliculus (SC). The speed with which neurons in these areas increase firing rate to a threshold determines latency of a saccade. Micro-stimulation of FEF/SC neurons below this threshold modulates the magnitude of PLR. Nonetheless, how the saccade latency and pupil dynamics are related remains unknown. Our study shows that the appearance of a bright stimulus evokes pupil constriction at higher rate when the latency of impending saccade to the stimulus is shorter. This inverse relationship between the rate of pupil constriction and the saccade latency is robust irrespective of the reward outcome. In a homeomorphic biomechanical model of pupil, we have projected build-up signal similar to FEF and SC activity to the parasympathetic and sympathetic divisions of the PLR pathway, respectively. Model simulation mimics the observed data to indicate that the FEF and SC activity for eye movement modulates autonomic input to the pupillary muscle plant. A striking similarity between the dynamics of pupil constriction and stochastic rise in neural activity for saccade elicitation suggests that PLR is a potential proxy of movement preparation, and not mere an indicator of attentional orientation. Our study suggests a mechanism of how the retinal luminosity is timely regulated to aid perception by minimizing visual transients due to gaze orientation.

2010 ◽  
Vol 103 (1) ◽  
pp. 519-530 ◽  
Author(s):  
Seiji Ono ◽  
Lukas Brostek ◽  
Ulrich Nuding ◽  
Stefan Glasauer ◽  
Ulrich Büttner ◽  
...  

Several regions of the brain are involved in smooth-pursuit eye movement (SPEM) control, including the cortical areas MST (medial superior temporal) and FEF (frontal eye field). It has been shown that the eye-movement responses to a brief perturbation of the visual target during ongoing pursuit increases with higher pursuit velocities. To further investigate the underlying neuronal mechanism of this nonlinear dynamic gain control and the contributions of different cortical areas to it, we recorded from MSTd (dorsal division of the MST area) neurons in behaving monkeys ( Macaca mulatta) during step-ramp SPEM (5–20°/s) with and without superimposed target perturbation (one cycle, 5 Hz, ±10°/s). Smooth-pursuit–related MSTd neurons started to increase their activity on average 127 ms after eye-movement onset. Target perturbation consistently led to larger eye-movement responses and decreasing latencies with increasing ramp velocities, as predicted by dynamic gain control. For 36% of the smooth-pursuit–related MSTd neurons the eye-movement perturbation was accompanied by detectable changes in neuronal activity with a latency of 102 ms, with respect to the eye-movement response. The remaining smooth-pursuit–related MSTd neurons (64%) did not reflect the eye-movement perturbation. For the large majority of cases this finding could be predicted by the dynamic properties of the step-ramp responses. Almost all these MSTd neurons had large visual receptive fields responding to motion in preferred directions opposite to the optimal SPEM stimulus. Based on these findings it is unlikely that MSTd plays a major role for dynamic gain control and initiation of the perturbation response. However, neurons in MSTd could still participate in SPEM maintenance. Due to their visual field properties they could also play a role in other functions such as self-motion perception.


2005 ◽  
Vol 93 (3) ◽  
pp. 1718-1729 ◽  
Author(s):  
Neeraj J. Gandhi ◽  
Desiree K. Bonadonna

Following the initial, sensory response to stimulus presentation, activity in many saccade-related burst neurons along the oculomotor neuraxis is observed as a gradually increasing low-frequency discharge hypothesized to encode both timing and metrics of the impending eye movement. When the activity reaches an activation threshold level, these cells discharge a high-frequency burst, inhibit the pontine omnipause neurons (OPNs) and trigger a high-velocity eye movement known as saccade. We tested whether early cessation of OPN activity, prior to when it ordinarily pauses, acts to effectively lower the threshold and prematurely trigger a movement of modified metrics and/or dynamics. Relying on the observation that OPN discharge ceases during not only saccades but also blinks, air-puffs were delivered to one eye to evoke blinks as monkeys performed standard oculomotor tasks. We observed a linear relationship between blink and saccade onsets when the blink occurred shortly after the cue to initiate the movement but before the average reaction time. Blinks that preceded and overlapped with the cue increased saccade latency. Blinks evoked during the overlap period of the delayed saccade task, when target location is known but a saccade cannot be initiated for correct performance, failed to trigger saccades prematurely. Furthermore, when saccade and blink execution coincided temporally, the peak velocity of the eye movement was attenuated, and its initial velocity was correlated with its latency. Despite the perturbations, saccade accuracy was maintained across all blink times and task types. Collectively, these results support the notion that temporal features of the low-frequency activity encode aspects of a premotor command and imply that inhibition of OPNs alone is not sufficient to trigger saccades.


1996 ◽  
Vol 75 (5) ◽  
pp. 2187-2191 ◽  
Author(s):  
H. Mushiake ◽  
N. Fujii ◽  
J. Tanji

1. We studied neuronal activity in the supplementary eye field (SEF) and frontal eye field (FEF) of a monkey during performance of a conditional motor task that required capturing of a target either with a saccadic eye movement (the saccade-only condition) or with an eye-hand reach (the saccade-and-reach condition), according to visual instructions. 2. Among 106 SEF neurons that showed presaccadic activity, more than one-half of them (54%) were active preferentially under the saccade-only condition (n = 12) or under the saccade-and-reach condition (n = 45), while the remaining 49 neurons were equally active in both conditions. 3. By contrast, most (97%) of the 109 neurons in the FEF exhibited approximately equal activity in relation to saccades under the two conditions. 4. The present results suggest the possibility that SEF neurons, at least in part, are involved in signaling whether the motor task is oculomotor or combined eye-arm movements, whereas FEF neurons are mostly related to oculomotor control.


SLEEP ◽  
2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Brook L W Sweeten ◽  
Amy M Sutton ◽  
Laurie L Wellman ◽  
Larry D Sanford

Abstract Study Objectives To examine the rapid eye movement sleep (REM) response to mild stress as a predictor of the REM response to intense stress and brain-derived neurotrophic factor (BDNF) as a potential biomarker of stress resilience and vulnerability. Methods Outbred Wistar rats were surgically implanted with electrodes for recording electroencephalography (EEG) and electromyogram (EMG) and intraperitoneal Data loggers to record body temperature. Blood was also obtained to measure circulating BDNF. After recovery, rats were exposed to mild stress (novel chamber, NC) and later intense stress (shock training, ST), followed by sleep recording. Subsequently, rats were separated into resilient (Res; n=27) or vulnerable (Vul; n = 15) based on whether or not there was a 50% or greater decrease in REM after ST compared to baseline. We then compared sleep, freezing, and the stress response (stress-induced hyperthermia, SIH) across groups to determine the effects of mild and intense stress to determine if BDNF was predictive of the REM response. Results REM totals in the first 4 hours of sleep after exposure to NC predicted REM responses following ST with resilient animals having higher REM and vulnerable animals having lower REM. Resilient rats had significantly higher baseline peripheral BDNF compared to vulnerable rats. Conclusions These results show that outbred rats display significant differences in post-stress sleep and peripheral BDNF identifying these factors as potential markers of resilience and vulnerability prior to traumatic stress.


2015 ◽  
Vol 41 (1) ◽  
pp. 28-35 ◽  
Author(s):  
Sebastiaan Mathôt ◽  
Lotje van der Linden ◽  
Jonathan Grainger ◽  
Françoise Vitu

2020 ◽  
Vol 13 (4) ◽  
Author(s):  
Seema Gorur Prasad ◽  
Ramesh Kumar Mishra

Subliminal cues have been shown to capture attention and modulate manual response behaviour but their impact on eye movement behaviour is not well-studied. In two experiments, we examined if subliminal cues influence constrained free-choice saccades and if this influence is under strategic control as a function of task-relevancy of the cues. On each trial, a display containing four filled circles at the centre of each quadrant was shown. A central coloured circle indicated the relevant visual field on each trial (Up or Down in Experiment 1; Left or Right in Experiment 2). Next, abrupt-onset cues were presented for 16 ms at one of the four locations. Participants were then asked to freely choose and make a saccade to one of the two target circles in the relevant visual field. The analysis of the frequency of saccades, saccade endpoint deviation and saccade latency revealed a significant influence of the relevant subliminal cues on saccadic decisions. Latency data showed reduced capture by spatially-irrelevant cues under some conditions. These results indicate that spatial attentional control settings as defined in our study could modulate the influence of subliminal abrupt-onset cues on eye movement behaviour. We situate the findings of this study in the attention-capture debate and discuss the implications for the subliminal cueing literature.   


2021 ◽  
Author(s):  
Satya P. Rungta ◽  
Debaleena Basu ◽  
Naveen Sendhilnathan ◽  
Aditya Murthy

AbstractA hallmark of intelligent behavior is that we can separate intention from action. To understand the mechanism that gates the flow of information between motor planning and execution, we compared the activity of frontal eye field neurons with motor unit activity from neck muscles in the presence of an intervening delay period in which spatial information regarding the target was available to plan a response. Whereas we could infer spatially-specific delayed period activity from the activity of frontal eye field neurons, neck motor unit activity during the delay period could not be used to infer the direction of an upcoming movement, Nonetheless, motor unit activity was correlated with the time it took to initiate saccades. Interestingly, we observed a heterogeneity of responses amongst motor units, such that only units with smaller amplitudes showed a clear modulation during the delay period. These small amplitude motor units also had higher spontaneous activity compared to the units which showed modulation only during the movement epoch. Taken together, our results suggest that the temporal information is visible in the periphery amongst smaller motor units during eye movement planning and explains how the delay period primes muscle activity leading to faster reaction times.Significance statementThis study shows that the temporal aspects of a motor plan in the oculomotor circuitry can be accessed by peripheral neck muscles hundreds of milliseconds prior to the instruction to initiate a saccadic eye movement. The coupling between central and peripheral processes during the delay time is mediated by the recruitment pattern of motor units with smaller amplitude in the periphery. Besides giving insight into how information processed in cortical areas is read out by the muscles, these findings could be useful to decode intentional signals from the periphery to control brain machine interface devices.


2008 ◽  
Vol 100 (5) ◽  
pp. 2726-2737 ◽  
Author(s):  
Edward L. Keller ◽  
Kyoung-Min Lee ◽  
Se-Woong Park ◽  
Jessica A. Hill

Previous studies using muscimol inactivations in the frontal eye fields (FEFs) have shown that saccades generated by recall from working memory are eliminated by these lesions, whereas visually guided saccades are relatively spared. In these experiments, we made reversible inactivations in FEFs in alert macaque monkeys and examined the effect on saccades in a choice response task. Our task required monkeys to learn arbitrary pairings between colored stimuli and saccade direction. Following inactivations, the percentage of choice errors increased as a function of the number of alternative (NA) pairings. In contrast, the percentage of dysmetric saccades (saccades that landed in the correct quadrant but were inaccurate) did not vary with NA. Saccade latency increased postlesion but did not increase with NA. We also made simultaneous inactivations in both FEFs. The results following bilateral lesions showed approximately twice as many choice errors. We conclude that the FEFs are involved in the generation of saccades in choice response tasks. The dramatic effect of NA on choice errors, but the lack of an effect of NA on motor errors or response latency, suggests that two types of processing are interrupted by FEF lesions. The first involves the formation of a saccadic intention vector from associate memory inputs, and the second, the execution of the saccade from the intention vector. An alternative interpretation of the first result is that a role of the FEFs may be to suppress incorrect responses. The doubling of choice errors following bilateral FEF lesions suggests that the effect of unilateral lesions is not caused by a general inhibition of the lesioned side by the intact side.


2009 ◽  
Vol 101 (6) ◽  
pp. 2934-2942 ◽  
Author(s):  
Rebecca A. Berman ◽  
Wilsaan M. Joiner ◽  
James Cavanaugh ◽  
Robert H. Wurtz

A cascade of neuronal signals precedes each saccadic eye movement to targets in the visual scene. In the cerebral cortex, this neuronal processing culminates in the frontal eye field (FEF), where neurons have bursts of activity before the saccade. This presaccadic activity is typically considered to drive downstream activity in the intermediate layers of the superior colliculus (SC), which receives direct projections from FEF. Consequently, the FEF activity is thought to be determined solely by earlier cortical processing and unaffected by activity in the SC. Recent evidence of an ascending path from the SC to FEF raises the possibility, however, that presaccadic activity in the FEF may also depend on input from the SC. Here we tested this possibility by recording from single FEF neurons during the reversible inactivation of SC. Our results indicate that presaccadic activity in the FEF does not require SC input: we never observed a significant reduction in FEF presaccadic activity when the SC was inactivated. Unexpectedly, in a third of experiments, SC inactivation elicited a significant increase in FEF presaccadic activity. The passive visual response of FEF neurons, in contrast, was virtually unaffected by inactivation of the SC. These findings show that presaccadic activity in the FEF does not originate in the SC but nevertheless may be influenced by modulatory signals ascending from the SC.


Sign in / Sign up

Export Citation Format

Share Document