scholarly journals Increasing age is independently associated with higher free water in non-active MS brain - A multi-compartment analysis using FAST-T2

2021 ◽  
Author(s):  
Liangdong Zhou ◽  
Yi Li ◽  
Xiuyuan Wang ◽  
Elizabeth Sweeney ◽  
Hang Zhang ◽  
...  

AbstractPurposeTo explore the relationship between the cerebral cortical perivascular space (PVS) and aging in non-active MS subjects by using the multi-echo T2 relaxometry based cerebrospinal fluid fraction (CSFF) map.MethodsMulti-echo spiral T2 data from 111 subjects with non-active multiple sclerosis (MS) were retrospectively investigated by fitting the T2 data into a three-compartment model, the three water compartments including myelin water, intra-extracellular water, and cerebrospinal fluid. Segmentation of T1w image was performed to get the region of interest (ROI) in cerebral cortical regions. The white matter lesion segmentation was conducted using a convolutional neural network (CNN) based segmentation tool. The CSFF in the ROIs were correlated with age by controlling the gender, white matter hyperintensity lesion burden, and MS disease duration. Multiple linear models were created for the analysis of aging effect on the CSFF.ResultsThe ROI analysis shows that the CSFF in the cerebral cortical regions (temporal, occipital, parietal, front, hippo, and mtl) are significantly linear increasing with age (p<0.01). The intra-extracellular water fraction (IEWF) in the ROIs are significantly linear decreasing (p<0.01).ConclusionThe multi-echo T2 based three-compartment model can be used to quantify the CSFF. The linear increase of CSF water contents in the cerebral cortical regions indicates increased perivascular space load in cortex with aging. The quantification of CSFF may provide a way to understand the glymphatic clearance function in aging and neurodegenerations.HighlightsMR T2 relaxometry is a valid method to quantify the cerebrospinal fluid fraction (CSFF) in cerebral cortical regionsThe CSFF in the cerebral cortical regions are positively correlated with age by controlling the white matter lesion load in non-active MS subjects.Quantification of cerebral CSFF may reflect the perivascular space load in cortex and better interpret the disease progression in neurodegenerative disease, such as MS.

2010 ◽  
Author(s):  
Lisa M. Delano-Wood ◽  
Norman Abeles ◽  
Mark W. Bondi ◽  
David J. Libon ◽  
Melissa Lamar ◽  
...  

2021 ◽  
Vol 26 (3) ◽  
pp. 15-19
Author(s):  
Ivona Orgonikova ◽  
Josep Brocal ◽  
Giunio Bruto Cherubini ◽  
Viktor Palus

Assessing the presence of vertebral column instability is essential in animals with vertebral fractures or luxations. Spinal instability is most commonly assessed using a three-compartment model and unstable vertebral fractures and luxations require surgical stabilisation. In cases of compression of the spinal cord (by haematoma, traumatic intervertebral disc extrusion or bone fragment), decompression surgery is necessary. Prompt surgery prevents additional spinal cord damage, but the overall condition of the patient, including any concurrent injuries, needs to be continually kept in mind. The vertebral column can be stabilised using multiple techniques, such as screws, pins, polymethylmetacrylate and plating techniques, as well as external stabilisation and spinal stapling. Complications of spinal surgeries include haemorrhage, infection, neurological deterioration, particularly in cases of spinal stabilisations, implant loosening and failure.


2021 ◽  
pp. 153537022198995
Author(s):  
Jian Huang ◽  
Jun Yang ◽  
Xingju Zou ◽  
Shilun Zuo ◽  
Jing Wang ◽  
...  

White matter lesion (WML) is caused by chronic cerebral hypoperfusion, which are usually associated with cognitive impairment. Evidence from recent studies has shown that ginkgolide B has a neuroprotective effect that could be beneficial for the treatment of ischemia; however, it is not clear whether ginkgolide B has a protective effect on WML. Our data show that ginkgolide B can promote the differentiation of oligodendrocyte precursor cell (OPC) into oligodendrocytes and promote oligodendrocyte survival following a WML. Ginkgolide B (5, 10, 20 mg/kg) or saline is administered intraperitoneally every day after WML. After 4 weeks, the data of Morris water maze suggested that rats’ memory and learning abilities were impaired, and the administration of ginkgolide B enhanced behavioral achievement. Also, treatment with ginkgolide B significantly attenuated this loss of myelin. Our result suggests that ginkgolide B promotes the differentiation of OPC into oligodendrocytes. We also found that ginkgolide B ameliorates oligodendrocytes apoptosis. Furthermore, ginkgolide B enhanced the expression of phosphorylated Akt and CREB. In conclusion, our data firstly show that ginkgolide B promotes oligodendrocyte genesis and oligodendrocyte myelin following a WML, possibly involving the Akt and CREB pathways.


1999 ◽  
Vol 14 (11) ◽  
pp. 728-731 ◽  
Author(s):  
Marjo S. van der Knaap ◽  
Ron A. Wevers ◽  
Shigeo Kure ◽  
Fons J. M. Gabreëls ◽  
Nanda M. Verhoeven ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document